Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1397688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690366

RESUMEN

Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is a kind of post-translational protein modification that is involved in various cellular processes in fungi, plants, and mammals. However, the function of PARPs in plant pathogenic fungi remains unknown. The present study investigated the roles and mechanisms of FonPARP1 in watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum (Fon). Fon has a single PARP FonPARP1 and one PARG FonPARG1. FonPARP1 is an active PARP and contributes to Fon pathogenicity through regulating its invasive growth within watermelon plants, while FonPARG1 is not required for Fon pathogenicity. A serine/threonine protein kinase, FonKin4, was identified as a FonPARP1-interacting partner by LC-MS/MS. FonKin4 is required for vegetative growth, conidiation, macroconidia morphology, abiotic stress response and pathogenicity of Fon. The S_TKc domain is sufficient for both enzyme activity and pathogenicity function of FonKin4 in Fon. FonKin4 phosphorylates FonPARP1 in vitro to enhance its poly(ADP-ribose) polymerase activity; however, FonPARP1 does not PARylate FonKin4. These results establish the FonKin4-FonPARP1 phosphorylation cascade that positively contributes to Fon pathogenicity. The present study highlights the importance of PARP-catalyzed protein PARylation in regulating the pathogenicity of Fon and other plant pathogenic fungi.

2.
J Agric Food Chem ; 71(30): 11667-11679, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486296

RESUMEN

The ubiquitin-proteasome system (UPS) regulates protein quality or control and plays essential roles in several biological and biochemical processes in fungi. Here, we present the characterization of two UPS components, FonDoa1 and FonDoa4, in watermelon Fusarium wilt fungus, Fusarium oxysporum f. sp. niveum (Fon), and their biological functions. FonDoa1 localizes in both the nucleus and cytoplasm, while FonDoa4 is predominantly present in the cytoplasm. Both genes show higher expression in germinating macroconidia at 12 h. Deletion of FonDoa1 or FonDoa4 affects vegetative growth, conidiation, conidial germination/morphology, apoptosis, and responses to environmental stressors. FonDoa1, but not FonDoa4, positively regulates autophagy. The targeted disruption mutants exhibit significantly attenuated pathogenicity on watermelon due to defects in the infection process and invasive fungal growth. Further results indicate that the WD40, PFU, and PUL domains are essential for the function of FonDoa1 in Fon pathogenicity and environmental stress responses. These findings demonstrate the previously uncharacterized biological functions of FonDoa1 and FonDoa4 in phytopathogenic fungi, providing potential targets for developing strategies to control watermelon Fusarium wilt.


Asunto(s)
Citrullus , Fusarium , Citrullus/microbiología , Fusarium/genética , Fusarium/metabolismo , Virulencia , Enfermedades de las Plantas/microbiología
3.
Microbiol Res ; 272: 127389, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37099956

RESUMEN

The Tup1-Cyc8 complex is a highly conserved transcriptional corepressor that regulates intricate genetic network associated with various biological processes in fungi. Here, we report the role and mechanism of FonTup1 in regulating physiological processes and pathogenicity in watermelon Fusarium wilt fungus, Fusarium oxysporum f. sp. niveum (Fon). FonTup1 deletion impairs mycelial growth, asexual reproduction, and macroconidia morphology, but not macroconidial germination in Fon. The ΔFontup1 mutant exhibits altered tolerance to cell wall perturbing agent (congo red) and osmotic stressors (sorbitol or NaCl), but unchanged sensitivity to paraquat. The deletion of FonTup1 significantly decreases the pathogenicity of Fon toward watermelon plants through attenuating the ability to colonize and grow within the host. Transcriptome analysis revealed that FonTup1 regulates primary metabolic pathways, including the tricarboxylic acid (TCA) cycle, via altering the expression of corresponding genes. Downregulation of three malate dehydrogenase genes, FonMDH1-3, occurs in ΔFontup1, and disruption of FonMDH2 causes significant abnormalities in mycelial growth, conidiation, and virulence of Fon. These findings demonstrate that FonTup1, as a global transcriptional corepressor, plays crucial roles in different biological processes and pathogenicity of Fon through regulating various primary metabolic processes, including the TCA cycle. This study highlights the importance and molecular mechanism of the Tup1-Cyc8 complex in multiple basic biological processes and pathogenicity of phytopathogenic fungi.


Asunto(s)
Fenómenos Biológicos , Citrullus , Fusarium , Virulencia/genética , Ciclo del Ácido Cítrico , Redes Reguladoras de Genes , Citrullus/genética , Citrullus/metabolismo , Citrullus/microbiología , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Enfermedades de las Plantas/microbiología
4.
Opt Express ; 31(2): 3199-3211, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785317

RESUMEN

Optical Phase Arrays (OPAs) are expected to be an ideal solution to achieve beam shaping, laser radar (LIDAR), free-space optical communications, and spatially resolved optical sensors, etc. We demonstrated a low-power consumption 32-channel OPA with non-uniformly spaced waveguides based on InP substrate. The phase shifters are based on a p-i-n structure which are operated with reverse bias and have a low power consumption. Besides, in order to improve the performance especially to obtain larger steering angle and narrower beam divergence without increasing the number of channels, we have optimized the spacing between the output waveguides. The fabricated OPA achieved a steering angle of 35° with the side lobe suppression ratio more than 8.2 dB across the angle range from -20° to 20° in the far field, which is the largest phase tuning steering angle reported by InP-based OPAs as far as we know. The divergence angle is about 0.46° in the phase steering dimension and the power consumption of the OPA at each steering angle is lower than 7.5 mW.

5.
Food Chem ; 408: 135185, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36525725

RESUMEN

The effect of melatonin treatment on the carotenoid metabolism in broccoli florets during storage was explored. The results indicated that 100 µmol/L of melatonin maintained the sensory quality of broccoli florets, which retarded the increase of the L* value and the decrease of the H value. Melatonin treatment increased the activities of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT), leading to the enrichment of endogenous melatonin content in broccoli florets. Meanwhile, the treatment inhibited the concentrations of ß-carotene, ß-cryptoxanthin, zeaxanthin and lutein, which was beneficial in delaying the yellowing of broccoli. In addition, a series of carotenoid biosynthetic genes such as BoPSY, BoPDS, BoZDS, BoLCYß and BoZEP was also suppressed by melatonin. Further analysis revealed that the lower carotenoid content and the down-regulated BoNCED expression in treated broccoli resulted in less accumulation of abscisic acid precursors, inhibiting abscisic acid production during the yellowing process.


Asunto(s)
Brassica , Melatonina , Humanos , Brassica/metabolismo , Melatonina/metabolismo , Ácido Abscísico/metabolismo , Tiempo de Tratamiento , Carotenoides/metabolismo
6.
Microbiol Spectr ; 11(1): e0386122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36533963

RESUMEN

Protein palmitoylation, one of posttranslational modifications, is catalyzed by a group of palmitoyl transferases (PATs) and plays critical roles in the regulation of protein functions. However, little is known about the function and mechanism of PATs in plant pathogenic fungi. The present study reports the function and molecular mechanism of FonPATs in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt. The Fon genome contains six FonPAT genes with distinct functions in vegetative growth, conidiation and conidial morphology, and stress response. FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for Fon virulence on watermelon mainly through regulating in planta fungal growth within host plants. Comparative proteomics analysis identified a set of proteins that were palmitoylated by FonPAT2, and some of them are previously reported pathogenicity-related proteins in fungi. The FonAP-2 complex core subunits FonAP-2α, FonAP-2ß, and FonAP-2µ were palmitoylated by FonPAT2 in vivo. FonPAT2-catalyzed palmitoylation contributed to the stability and interaction ability of the core subunits to ensure the formation of the FonAP-2 complex, which is essential for vegetative growth, asexual reproduction, cell wall integrity, and virulence in Fon. These findings demonstrate that FonPAT1, FonPAT2, and FonPAT4 play important roles in Fon virulence and that FonPAT2-catalyzed palmitoylation of the FonAP-2 complex is critical to Fon virulence, providing novel insights into the importance of protein palmitoylation in the virulence of plant fungal pathogens. IMPORTANCE Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt, is one of the most serious threats for the sustainable development of the watermelon industry worldwide. However, little is known about the underlying molecular mechanism of pathogenicity in Fon. Here, we found that the palmitoyl transferase (FonPAT) genes play distinct and diverse roles in basic biological processes and stress response and demonstrated that FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for virulence in Fon. We also found that FonPAT2 palmitoylates the core subunits of the FonAP-2 complex to maintain the stability and the formation of the FonAP-2 complex, which is essential for basic biological processes, stress response, and virulence in Fon. Our study provides new insights into the understanding of the molecular mechanism involved in Fon virulence and will be helpful in the development of novel strategies for disease management.


Asunto(s)
Citrullus , Fusarium , Lipoilación , Estrés Fisiológico , Catálisis , Citrullus/microbiología , Fusarium/metabolismo , Fusarium/fisiología , Lipoilación/fisiología , Enfermedades de las Plantas/microbiología , Virulencia , Complejo 2 de Proteína Adaptadora/química , Complejo 2 de Proteína Adaptadora/metabolismo , Estrés Fisiológico/fisiología
7.
Opt Express ; 30(2): 2599-2609, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209396

RESUMEN

We demonstrated a high output power distributed-Bragg-reflector (DBR) laser integrated with semiconductor optical amplifier (SOA) for the frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR) system. In order to acquire higher output power, different from the conventional SG-DBR laser, the front mirror in this work is a section of uniform grating to get higher transmissivity. Therefore, the output power of the laser reaches 96 mW when the gain current and SOA current are 200 mA and 400 mA, respectively. Besides, we fabricated a spot size converter (SSC) at the laser output port to enhance the fiber coupling efficiency, which reached 64% coupled into the lensed fiber whose beam waist diameter is 2.5 µm. A tuning range of 2.8 nm with free spectral range (FSR) of 0.29 nm and narrow Lorentzian linewidth of 313 kHz is achieved. To realize distance and velocity measurement, we use the iterative learning pre-distortion method to linearize the frequency sweep, which is an important part of the FMCW LiDAR technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...