Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114196, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38717902

RESUMEN

Memory recall and guidance are essential for motor skill acquisition. Like humans learning to speak, male zebra finches learn to sing by first memorizing and then matching their vocalization to the tutor's song (TS) during specific developmental periods. Yet, the neuroanatomical substrate supporting auditory-memory-guided sensorimotor learning has remained elusive. Here, using a whole-brain connectome analysis with activity-dependent viral expression, we identified a transient projection into the motor region, HVC, from neuronal ensembles responding to TS in the auditory forebrain, the caudomedial nidopallium (NCM), in juveniles. Virally induced cell death of the juvenile, but not adult, TS-responsive NCM neurons impaired song learning. Moreover, isolation, which delays closure of the sensory, but not the motor, learning period, did not affect the decrease of projections into the HVC from the NCM TS-responsive neurons after the song learning period. Taken together, our results suggest that dynamic axonal pruning may regulate timely auditory-memory-guided vocal learning during development.


Asunto(s)
Pinzones , Aprendizaje , Vocalización Animal , Animales , Vocalización Animal/fisiología , Pinzones/fisiología , Aprendizaje/fisiología , Masculino , Neuronas/fisiología , Conectoma
2.
Nat Commun ; 15(1): 98, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167733

RESUMEN

Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration - an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns - no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation.


Asunto(s)
Pájaros Cantores , Animales , Pájaros Cantores/genética , Regulación de la Expresión Génica , Genoma , Genómica , Especiación Genética , Hibridación Genética , Aislamiento Reproductivo
3.
Proc Biol Sci ; 288(1961): 20211137, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34702076

RESUMEN

Movement of the embryo is essential for musculoskeletal development in vertebrates, yet little is known about whether, and why, species vary. Avian brood parasites exhibit feats of strength in early life as adaptations to exploit the hosts that rear them. We hypothesized that an increase in embryonic movement could allow brood parasites to develop the required musculature for these demands. We measured embryo movement across incubation for multiple brood-parasitic and non-parasitic bird species. Using a phylogenetically controlled analysis, we found that brood parasites exhibited significantly increased muscular movement during incubation compared to non-parasites. This suggests that increased embryo movement may facilitate the development of the stronger musculoskeletal system required for the demanding tasks undertaken by young brood parasites.


Asunto(s)
Parásitos , Adaptación Fisiológica , Animales , Evolución Biológica , Aves/parasitología , Interacciones Huésped-Parásitos , Comportamiento de Nidificación , Reproducción
4.
Curr Zool ; 66(3): 293-306, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32440290

RESUMEN

For the last 40 years, the study of cooperative breeding (CB) in birds has proceeded primarily in the context of discovering the ecological, geographical, and behavioral drivers of helping. The advent of molecular tools in the early 1990s assisted in clarifying the relatedness of helpers to those helped, in some cases, confirming predictions of kin selection theory. Methods for genome-wide analysis of sequence variation, gene expression, and epigenetics promise to add new dimensions to our understanding of avian CB, primarily in the area of molecular and developmental correlates of delayed breeding and dispersal, as well as the ontogeny of achieving parental status in nature. Here, we outline key ways in which modern -omics approaches, in particular genome sequencing, transcriptomics, and epigenetic profiling such as ATAC-seq, can be used to add a new level of analysis of avian CB. Building on recent and ongoing studies of avian social behavior and sociogenomics, we review how high-throughput sequencing of a focal species or clade can provide a robust foundation for downstream, context-dependent destructive and non-destructive sampling of specific tissues or physiological states in the field for analysis of gene expression and epigenetics. -Omics approaches have the potential to inform not only studies of the diversification of CB over evolutionary time, but real-time analyses of behavioral interactions in the field or lab. Sociogenomics of birds represents a new branch in the network of methods used to study CB, and can help clarify ways in which the different levels of analysis of CB ultimately interact in novel and unexpected ways.

5.
Genes Brain Behav ; 19(7): e12653, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32198809

RESUMEN

Prolactin is often referred to as the "parental hormone" but there are examples in which prolactin and parental behavior are disconnected. One intriguing example is in avian obligate brood parasites; species exhibiting high circulating prolactin but no parental care. To understand this disconnect, we examined transcriptional and behavioral responses to prolactin in brown-headed (Molothrus ater) and bronzed (M aeneus) brood parasitic cowbirds. We first examine prolactin-dependent regulation of transcriptome wide gene expression in the preoptic area (POA), a brain region associated with parental care across vertebrates. We next examined prolactin-dependent abundance of seven parental care-related candidate genes in hypothalamic regions that are prolactin-responsive in other avian species. We found no evidence of prolactin sensitivity in cowbirds in either case. To understand this prolactin insensitivity, we compared prolactin receptor transcript abundance between parasitic and nonparasitic species and between prolactin treated and untreated cowbirds. We observed significantly lower prolactin receptor transcript abundance in brown-headed but not bronzed cowbird POA compared with a nonparasite and no prolactin-dependent changes in either parasitic species. Finally, estrogen-primed female brown-headed cowbirds with or without prolactin treatment exhibited significantly greater avoidance of nestling begging stimuli compared with untreated birds. Taken together, our results suggest that modified prolactin receptor distributions in the POA and surrounding hypothalamic regions disconnect prolactin from parental care in brood parasitic cowbirds.


Asunto(s)
Proteínas Aviares/genética , Conducta Materna , Comportamiento de Nidificación , Passeriformes/genética , Prolactina/sangre , Receptores de Prolactina/genética , Animales , Proteínas Aviares/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiología , Passeriformes/fisiología , Área Preóptica/metabolismo , Área Preóptica/fisiología , Receptores de Prolactina/metabolismo , Transcriptoma
6.
Sci Rep ; 10(1): 4092, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139746

RESUMEN

The recognition of and differential responses to salient stimuli are among the main drivers of behavioral plasticity, yet, how animals evolve and modulate functional responses to novel classes of antagonistic stimuli remain poorly understood. We studied free-living male red-winged blackbirds (Agelaius phoeniceus) to test whether gene expression responses in blood are distinct or shared between patterns of aggressive behavioral responses directed at simulated conspecific versus heterospecific intruders. In this species, males defend territories against conspecific males and respond aggressively to female brown-headed cowbirds (Molothrus ater), a brood parasite that commonly lays eggs in blackbird nests. Both conspecific songs and parasitic calls elicited aggressive responses from focal subjects and caused a downregulation in genes associated with immune system response, relative to control calls of a second, harmless heterospecific species. In turn, only the conspecific song treatment elicited an increase in singing behavior and an upregulation of genes associated with metabolic processes relative to the two heterospecific calls. Our results suggest that aspects of antagonistic behaviors to both conspecifics and brood parasites can be mediated by similar physiological responses, suggestive of shared molecular and behavioral pathways involved in the recognition and reaction to both evolutionarily old and new enemies.


Asunto(s)
Percepción Auditiva/fisiología , Conducta Sexual Animal/fisiología , Canto/fisiología , Pájaros Cantores/fisiología , Transcriptoma , Vocalización Animal/fisiología , Animales , Evolución Biológica , Femenino , Perfilación de la Expresión Génica , Masculino
7.
Curr Biol ; 29(23): 4045-4051.e3, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31735680

RESUMEN

How does a naive, young animal decide from which adults to learn behavior? Obligate brood parasitic birds, including brown-headed cowbirds (Molothrus ater), face a particular challenge in learning species-specific behaviors; they lay their eggs in the nest of another species, and juveniles are raised without exposure to adult conspecifics. Nevertheless, male cowbirds need to learn a conspecific song to attract appropriate mates, and female cowbirds need to learn to identify conspecific males for mating. Traditionally, it was thought that parasitic bird species rely purely on instinctual species recognition [1-4], but an alternative is that a species-specific trait serves as a "password" [5], a non-learned cue for naive animals that guides decisions regarding from whom to learn. Here, we tested the hypothesis that the adult "chatter call" enhances the learning of specific songs in juvenile cowbirds. We exposed acoustically naive juvenile male and female cowbirds to songs paired with chatter calls and found that the chatter call enhanced song production learning in males and induced a neurogenomic profile of song familiarity in females, even for heterospecific songs. Thus, a combination of experience-independent and -dependent mechanisms converges to explain how young cowbirds emerge from another species' nest yet learn behaviors from conspecifics. Identifying whether such password-based mechanisms relate to perceptual and behavioral learning in non-parasitic taxa will contribute to our general understanding of the development of social recognition systems.


Asunto(s)
Percepción Auditiva , Aprendizaje , Pájaros Cantores/fisiología , Vocalización Animal , Animales , Femenino , Masculino , Parásitos , Especificidad de la Especie
8.
J Evol Biol ; 32(11): 1310-1315, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31568626

RESUMEN

Females are expected to have evolved to be more discriminatory in mate choice than males as a result of greater reproductive investment into larger gametes (eggs vs. sperm). In turn, males are predicted to be more promiscuous than females, showing both a larger variance in the number of mates and a greater increase in reproductive success with more mates, yielding more intense sexual selection on males vs. females (Bateman's Paradigm). However, sex differences in costly parental care strategies can either reinforce or counteract the initial asymmetry in reproductive investment, which may be one cause for some studies failing to conform with predictions of Bateman's Paradigm. For example, in many bird species with small female-biased initial investment but extensive biparental care, both sexes should be subject to similar strengths of sexual selection because males and females are similarly restricted in their ability to pursue additional mates. Unlike 99% of avian species, however, obligate brood parasitic birds lack any parental care in either sex, predicting a conformation to Bateman's Paradigm. Here we use microsatellite genotyping to demonstrate that in brood parasitic brown-headed cowbirds (Molothrus ater), per capita annual reproductive success increases with the number of mates in males, but not in females. Furthermore, also as predicted, the variance of the number of mates and offspring is greater in males than in females. Thus, contrary to previous findings in this species, our results conform to predictions of the Bateman's Paradigm for taxa without parental care.


Asunto(s)
Modelos Biológicos , Passeriformes/genética , Passeriformes/fisiología , Selección Genética , Animales , Femenino , Masculino , Reproducción
9.
Biol Rev Camb Philos Soc ; 94(5): 1619-1635, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31066222

RESUMEN

Auditory communication in humans and other animals frequently takes place in noisy environments with many co-occurring signallers. Receivers are thus challenged to rapidly recognize salient auditory signals and filter out irrelevant sounds. Most bird species produce a variety of complex vocalizations that function to communicate with other members of their own species and behavioural evidence broadly supports preferences for conspecific over heterospecific sounds (auditory species recognition). However, it remains unclear whether such auditory signals are categorically recognized by the sensory and central nervous system. Here, we review 53 published studies that compare avian neural responses between conspecific versus heterospecific vocalizations. Irrespective of the techniques used to characterize neural activity, distinct nuclei of the auditory forebrain are consistently shown to be repeatedly conspecific selective across taxa, even in response to unfamiliar individuals with distinct acoustic properties. Yet, species-specific neural discrimination is not a stereotyped auditory response, but is modulated according to its salience depending, for example, on ontogenetic exposure to conspecific versus heterospecific stimuli. Neuromodulators, in particular norepinephrine, may mediate species recognition by regulating the accuracy of neuronal coding for salient conspecific stimuli. Our review lends strong support for neural structures that categorically recognize conspecific signals despite the highly variable physical properties of the stimulus. The available data are in support of a 'perceptual filter'-based mechanism to determine the saliency of the signal, in that species identity and social experience combine to influence the neural processing of species-specific auditory stimuli. Finally, we present hypotheses and their testable predictions, to propose next steps in species-recognition research into the emerging model of the neural conceptual construct in avian auditory recognition.


Asunto(s)
Aves/fisiología , Audición/fisiología , Vocalización Animal/fisiología , Animales , Encéfalo/fisiología , Nervio Coclear/fisiología , Especificidad de la Especie
10.
G3 (Bethesda) ; 9(4): 1075-1084, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30760540

RESUMEN

Parental care is critical for offspring survival in many species. However, parental behaviors have been lost in roughly 1% of avian species known as the obligate brood parasites. To shed light on molecular and neurobiological mechanisms mediating brood parasitic behavior, we compared brain gene expression patterns between two brood parasitic species and one closely related non-parasitic Icterid (blackbird) species. Our analyses focused on gene expression changes specifically in the preoptic area (POA), a brain region known to play a critical role in parental behavior across vertebrates. Using comparative transcriptomic approaches, we identified gene expression patterns associated with brood parasitism. We evaluated three non-mutually exclusive alternatives for the evolution of brood parasitism: (1) retention of juvenile-like (neotenic) gene expression, (2) reduced expression of maternal care-related genes in the POA, and/or (3) increased expression of genes inhibiting maternal care. We find evidence for neotenic expression patterns in both species of parasitic cowbirds as compared to maternal, non-parasites. In addition, we observed differential expression in a number of genes with previously established roles in mediating maternal care. Together, these results provide the first insight into transcriptomic and genetic mechanisms underlying the loss of maternal behavior in avian brood parasites.


Asunto(s)
Conducta Animal , Conducta Materna , Passeriformes/fisiología , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Animales , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Perfilación de la Expresión Génica , Neuropéptidos/genética , Neuropéptidos/metabolismo , Passeriformes/genética , Área Preóptica/metabolismo , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptores de Prolactina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
11.
Brain Behav Evol ; 91(4): 193-200, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29920477

RESUMEN

Species recognition mediates the association of individuals with conspecifics. Learned cues often facilitate species recognition via early social experience with parents and siblings. Yet, in some songbirds, the production of species-typical vocalizations develops in the absence of early social experiences. Here, we investigate the auditory-evoked neural responses of juvenile red-winged blackbirds (Agelaius phoeniceus), a nonparasitic (parental) species within the Icterid family and contrast these results with a closely related Icterid parasitic species that lacks parental care, the brown-headed cowbird (Molothrus ater). We demonstrate that immediate early gene (IEG) activity in the caudomedial mesopallium (CMM) is selectively evoked in response to conspecific non-learned vocalizations in comparison to 2 types of heterospecific non-learned vocalizations, independent of the acoustic similarity patterns between the playback stimuli. This pattern, however, was not detected in the caudomedial nidopallium (NCM). Because the red-winged blackbird is a parental species, the conspecific non-learned vocalization is presumably a familiar sound to the juvenile red-winged blackbird, whereas the heterospecific non-learned vocalizations are novel. We contrast results reported here with our recent demonstration of selective IEG induction in response to non-learned conspecific vocalizations in juvenile parasitic brown-headed cowbirds, in which conspecific non-learned vocalizations are presumably novel. In this case, selective IEG induction from conspecific non-learned vocalization occurred within NCM but not within CMM. By comparing closely related species with stark differences in the early exposure to conspecifics, we demonstrate that CMM and NCM respond to familiar vs. novel non-learned vocalizations in a manner that parallel previously reported regional responses to learned vocalizations such as conspecific songs.


Asunto(s)
Percepción Auditiva/fisiología , Prosencéfalo/fisiología , Pájaros Cantores/fisiología , Vocalización Animal , Animales , Expresión Génica , Inmunohistoquímica , Masculino , Proteínas del Tejido Nervioso/metabolismo , Filogenia , Espectrografía del Sonido , Especificidad de la Especie , Vocalización Animal/fisiología
12.
Behav Brain Res ; 347: 69-76, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-29501507

RESUMEN

Amongst an array of stimuli from countless species, animals must recognize salient signals, including those of their own species. In songbirds, behavioral tests have demonstrated that preferences for conspecific male songs are determined by both preexisting biases and social experience with a male 'tutor' during the sensitive period for learning. Although immediate early gene expression (e.g. ZENK) and electrophysiological experiments generally find greater neural responses for conspecific songs, it remains unclear whether distinct mechanisms, such as sensory gating, are engaged to filter out irrelevant heterospecific songs. Here we compare the transcriptomic profiles, via RNA-seq, of non-singing females of a songbird, the zebra finch (Taeniopygia guttata), by focusing on the auditory forebrain, a region known to be critical in the processing of conspecific vs. heterospecific songs. Gene expression profiles demonstrate that different neural mechanisms are involved in the processing of conspecific versus heterospecific Bengalese finch (Lonchura striata) songs. In particular, one gene known to mediate sensory gating, the alpha 3 subunit member of nicotinic cholinergic receptors (CHRNA3), was significantly downregulated in response to hearing Bengalese finch song, but not when young females were tutored by a Bengalese male during early development. Overall, our results confirm previous behavioral and physiological studies, such that heterospecific-tutored individuals processed both conspecific and tutor songs similarly. Using transcriptomic profiling of peripheral blood samples, we also demonstrate the methodological potential of non-terminal sampling to identify transcriptomic biomarkers for conspecific auditory recognition. These results show how experience and inherited preferences facilitate the neural processing of salient songs by female songbirds.


Asunto(s)
Percepción Auditiva/fisiología , Pinzones/metabolismo , Impronta Psicológica/fisiología , Prosencéfalo/metabolismo , Transcriptoma , Vocalización Animal/fisiología , Animales , Proteínas Aviares/metabolismo , Femenino , Pinzones/crecimiento & desarrollo , Patrones de Reconocimiento Fisiológico/fisiología , Prosencéfalo/crecimiento & desarrollo , Distribución Aleatoria , Espectrografía del Sonido , Especificidad de la Especie , Transcriptoma/fisiología
13.
J Exp Biol ; 220(Pt 13): 2345-2353, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28420657

RESUMEN

Obligate avian brood parasites are raised by heterospecific hosts and, therefore, lack crucial early exposure to relatives and other conspecifics. Yet, young brood parasites readily recognize and affiliate with others of their own species upon independence. One solution to this social recognition paradox is the ontogenetic 'password' mechanism used by obligate parasitic brown-headed cowbirds (Molothrus ater), whereby conspecific identification is initially mediated through the cowbird chatter: a non-learned vocal cue. We explored the neural basis of such password-based species recognition in juvenile and adult male cowbirds. We found that cowbird auditory forebrain regions express greater densities of the protein product of the immediate-early gene ZENK in response to the password chatter call relative to control sounds of mourning dove (Zenaida macroura) coos. The chatter-selective induction of ZENK expression occurs in both the caudal medial nidopallium (NCM) and the caudal medial mesopallium (CMM) in adults, but only within the NCM in juveniles. In contrast, we discovered that juvenile cowbirds exhibit neural selectivity to presentations of either conspecific or heterospecific songs, but only in CMM and only after recent experience. Juvenile cowbirds that did not have previous experience with the song type they were exposed to during the test period exhibited significantly lower activity-dependent gene expression. Thus, in juvenile male cowbirds, there is early onset of species-specific selective neural representation of non-learned calls in NCM and recently experienced song in CMM. These results suggest that NCM is evolutionarily co-opted in parasitic cowbirds to selectively recognize the password chatter, allowing juvenile cowbirds to identify adult conspecifics and avoid mis-imprinting upon unrelated host species. These ontogenetic comparisons reveal novel insights into the neural basis of species recognition in brood parasitic species.


Asunto(s)
Percepción Auditiva , Proteínas Aviares/genética , Expresión Génica , Prosencéfalo/fisiología , Pájaros Cantores/fisiología , Vocalización Animal , Factores de Edad , Animales , Proteínas Aviares/metabolismo , Evolución Biológica , Interacciones Huésped-Parásitos , Pájaros Cantores/genética
14.
Neurosci Lett ; 622: 49-54, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27095589

RESUMEN

In many social animals, early exposure to conspecific stimuli is critical for the development of accurate species recognition. Obligate brood parasitic songbirds, however, forego parental care and young are raised by heterospecific hosts in the absence of conspecific stimuli. Having evolved from non-parasitic, parental ancestors, how brood parasites recognize their own species remains unclear. In parental songbirds (e.g. zebra finch Taeniopygia guttata), the primary and secondary auditory forebrain areas are known to be critical in the differential processing of conspecific vs. heterospecific songs. Here we demonstrate that the same auditory brain regions underlie song discrimination in adult brood parasitic pin-tailed whydahs (Vidua macroura), a close relative of the zebra finch lineage. Similar to zebra finches, whydahs showed stronger behavioral responses during conspecific vs. heterospecific song and tone pips as well as increased neural responses within the auditory forebrain, as measured by both functional magnetic resonance imaging (fMRI) and immediate early gene (IEG) expression. Given parallel behavioral and neuroanatomical patterns of song discrimination, our results suggest that the evolutionary transition to brood parasitism from parental songbirds likely involved an "evolutionary tinkering" of existing proximate mechanisms, rather than the wholesale reworking of the neural substrates of species recognition.


Asunto(s)
Corteza Auditiva/fisiología , Discriminación en Psicología , Passeriformes/fisiología , Discriminación de la Altura Tonal , Vocalización Animal/fisiología , Estimulación Acústica , Animales , Femenino , Genes Inmediatos-Precoces , Imagen por Resonancia Magnética , Masculino , Pájaros Cantores/fisiología , Especificidad de la Especie
15.
Proc Biol Sci ; 282(1814)2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26336180

RESUMEN

Avian obligate brood parasites, which rely solely on hosts to raise their young, should choose the highest quality hosts to maximize reproductive output. Brown-headed cowbirds (Molothrus ater) are extreme host generalists, yet female cowbirds could use information based on past reproductive outcomes to make egg-laying decisions thus minimizing fitness costs associated with parasitizing low-quality hosts. We use a long-term (21 years) nest-box study of a single host, the prothonotary warbler (Protonotaria citrea), to show that local cowbird reproductive success, but not host reproductive success, was positively correlated with the probability of parasitism the following year. Experimental manipulations of cowbird success corroborated that female cowbirds make future decisions about which hosts to use based on information pertaining to past cowbird success, both within and between years. The within-year pattern, in particular, points to local cowbird females selecting hosts based on past reproductive outcomes. This, coupled with high site fidelity of female cowbirds between years, points to information use, rather than cowbird natal returns alone, increasing parasitism rates on highly productive sites between years.


Asunto(s)
Conducta de Elección , Comportamiento de Nidificación , Passeriformes/fisiología , Passeriformes/parasitología , Conducta Predatoria , Reproducción/fisiología , Animales , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA