Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heredity (Edinb) ; 129(5): 305-315, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36229647

RESUMEN

Hybridization and introgression have played important roles in the history of various species, including lineage diversification and the evolution of adaptive traits. Hybridization can accelerate the development of reproductive isolation between diverging species, and thus valuable insight into the evolution of reproductive barrier formation may be gained by studying secondary contact zones. Hedgehogs of the genus Erinaceus, which are insectivores sensitive to changes in climate, are a pioneer model in Pleistocene phylogeography. The present study provides the first genome-wide SNP data regarding the Erinaceus hedgehogs species complex, offering a unique comparison of two secondary contact zones between Erinaceus europaeus and E. roumanicus. Results confirmed diversification of the genus during the Pleistocene period, and detected a new refugial lineage of E. roumanicus outside the Mediterranean basin, most likely in the Ponto-Caspian region. In the Central European zone, the level of hybridization was low, whereas in the Russian-Baltic zone, both species hybridise extensively. Asymmetrical gene flow from E. europaeus to E. roumanicus suggests that reproductive isolation varies according to the direction of the crosses in the hybrid zones. However, no loci with significantly different patterns of introgression were detected. Markedly different pre- and post-zygotic barriers, and thus diverse modes of species boundary maintenance in the two contact zones, likely exist. This pattern is probably a consequence of the different age and thus of the different stage of evolution of reproductive isolating mechanisms in each hybrid zone.


Asunto(s)
Erizos , Hibridación Genética , Animales , Erizos/genética , Aislamiento Reproductivo , Flujo Génico , Filogeografía
2.
Animals (Basel) ; 10(10)2020 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-33020407

RESUMEN

Hedgehogs, as medium-sized plantigrade insectivores with low basal metabolic rates and related defensive anti-predator strategies, are quite sensitive to temperature and ecosystem productivity. Their ranges therefore changed dramatically due to Pleistocene climate oscillations, resulting in allopatric speciation and the subsequent formation of secondary contact zones. Such interactions between closely related species are known to generate strong evolutionary forces responsible for niche differentiation. In this connection, here, we detail the results of research on the phenotypic evolution in the two species of hedgehog present in central Europe, as based on genetics and geometric morphometrics in samples along a longitudinal transect that includes the contact zone between the species. While in allopatry, Erinaceus europaeus is found to have a larger skull than E. roumanicus and distinct cranial and mandibular shapes; the members of the two species in sympatry are smaller and more similar to each other, with a convergent shape of the mandible. The relevant data fail to reveal any major role for either hybridisation or clinal variation. We, therefore, hypothesise that competitive pressure exerted on the studied species does not generate divergent selection sufficient for divergent character displacement to evolve, instead giving rise to convergent selection in the face of resource limitation in the direction of smaller skull size. Considering the multi-factorial constraints present in the relevant adaptive landscape, reduction in size could also be facilitated by predator pressure in ecosystems characterised by mesopredator release and other anthropogenic factors. As the function of the animals' lower jaw is mainly connected with feeding (in contrast to the cranium whose functions are obviously more complex), we interpret the similarity in shape as reflecting local adaptations to overlapping dietary resources in the two species and hence as convergent character displacement.

3.
Animals (Basel) ; 10(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825208

RESUMEN

Hedgehogs are among the most abundant species to be found within wildlife shelters and after successful rehabilitation they are frequently translocated. The effects and potential impact of these translocations on gene flow within wild populations are largely unknown. In this study, different wild hedgehog populations were compared with artificially created "shelter populations", with regard to their genetic diversity, in order to establish basic data for future inferences on the genetic impact of hedgehog translocations. Observed populations are located within central Europe, including the species Erinaceus europaeus and E. roumanicus. Shelters were mainly hosting one species; in one case, both species were present syntopically. Apart from one exception, the results did not show a higher genetic diversity within shelter populations, indicating that individuals did not originate from a wider geographical area than individuals grouped into one of the wild populations. Two shelters from Innsbruck hosted individuals that belonged to two potential clusters, as indicated in a distance analysis. When such a structure stems from the effects of landscape elements like large rivers, the shelter management-related translocations might lead to homogenization across the dispersal barrier.

4.
PeerJ ; 5: e3163, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28462018

RESUMEN

Although hedgehogs are well-known examples of postglacial recolonisation, the specific processes that shape their population structures have not been examined by detailed sampling and fast-evolving genetic markers in combination with model based clustering methods. This study aims to analyse the impacts of isolation within glacial refugia and of postglacial expansion on the population structure of the Northern White-breasted hedgehog (Erinaceus roumanicus). It also discusses the role of the processes at edges of species distribution in its evolutionary history. The maternally inherited mitochondrial control region and the bi-parentally inherited nuclear microsatellites were used to examine samples within the Central Europe, Balkan Peninsula and adjacent islands. Bayesian coalescent inference and neutrality tests proposed a recent increase in the population size. The most pronounced pattern of population structure involved differentiation of the insular populations in the Mediterranean Sea and the population within the contact zone with E. europaeus in Central Europe. An interspecies hybrid was detected for the first time in Central Europe. A low genetic diversity was observed in Crete, while the highest genetic distances among individuals were found in Romania. The recent population in the post-refugial area related to the Balkan Peninsula shows a complex pattern with pronounced subpopulations located mainly in the Pannonian Basin and at the Adriatic and Pontic coasts. Detailed analyses indicate that parapatry and peripatry may not be the only factors that limit range expansion, but also strong microevolutionary forces that may change the genetic structure of the species. Here we present evidence showing that population differentiation may occur not only during the glacial restriction of the range into the refugia, but also during the interglacial range expansion. Population differentiation at the Balkan Peninsula and adjacent regions could be ascribed to diversification in steppe/forest biomes and complicated geomorphology, including pronounced geographic barriers as Carpathians.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...