Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446056

RESUMEN

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that has been implicated in numerous oncogenic processes. GSK-3 inhibitor elraglusib (9-ING-41) has shown promising preclinical and clinical antitumor activity across multiple tumor types. Despite promising early-phase clinical trial results, there have been limited efforts to characterize the potential immunomodulatory properties of elraglusib. We report that elraglusib promotes immune cell-mediated tumor cell killing of microsatellite stable colorectal cancer (CRC) cells. Mechanistically, elraglusib sensitized CRC cells to immune-mediated cytotoxicity and enhanced immune cell effector function. Using western blots, we found that elraglusib decreased CRC cell expression of NF-κB p65 and several survival proteins. Using microarrays, we discovered that elraglusib upregulated the expression of proapoptotic and antiproliferative genes and downregulated the expression of cell proliferation, cell cycle progression, metastasis, TGFß signaling, and anti-apoptotic genes in CRC cells. Elraglusib reduced CRC cell production of immunosuppressive molecules such as VEGF, GDF-15, and sPD-L1. Elraglusib increased immune cell IFN-γ secretion, which upregulated CRC cell gasdermin B expression to potentially enhance pyroptosis. Elraglusib enhanced immune effector function resulting in augmented granzyme B, IFN-γ, TNF-α, and TRAIL production. Using a syngeneic, immunocompetent murine model of microsatellite stable CRC, we evaluated elraglusib as a single agent or combined with immune checkpoint blockade (anti-PD-1/L1) and observed improved survival in the elraglusib and anti-PD-L1 group. Murine responders had increased tumor-infiltrating T cells, augmented granzyme B expression, and fewer regulatory T cells. Murine responders had reduced immunosuppressive (VEGF, VEGFR2) and elevated immunostimulatory (GM-CSF, IL-12p70) cytokine plasma concentrations. To determine the clinical significance, we then utilized elraglusib-treated patient plasma samples and found that reduced VEGF and BAFF and elevated IL-1 beta, CCL22, and CCL4 concentrations correlated with improved survival. Using paired tumor biopsies, we found that tumor-infiltrating immune cells had a reduced expression of inhibitory immune checkpoints (VISTA, PD-1, PD-L2) and an elevated expression of T-cell activation markers (CTLA-4, OX40L) after elraglusib treatment. These results address a significant gap in knowledge concerning the immunomodulatory mechanisms of GSK-3 inhibitor elraglusib, provide a rationale for the clinical evaluation of elraglusib in combination with immune checkpoint blockade, and are expected to have an impact on additional tumor types, besides CRC.


Asunto(s)
Neoplasias Colorrectales , Glucógeno Sintasa Quinasa 3 , Humanos , Animales , Ratones , Glucógeno Sintasa Quinasa 3/metabolismo , Granzimas/genética , Granzimas/metabolismo , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias Colorrectales/metabolismo , Linfocitos Infiltrantes de Tumor , Biopsia , Línea Celular Tumoral , Antígeno B7-H1
3.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798357

RESUMEN

Inhibition of GSK-3 using small-molecule elraglusib has shown promising preclinical antitumor activity. Using in vitro systems, we found that elraglusib promotes immune cell-mediated tumor cell killing, enhances tumor cell pyroptosis, decreases tumor cell NF-κB-regulated survival protein expression, and increases immune cell effector molecule secretion. Using in vivo systems, we observed synergy between elraglusib and anti-PD-L1 in an immunocompetent murine model of colorectal cancer. Murine responders had more tumor-infiltrating T-cells, fewer tumor-infiltrating Tregs, lower tumorigenic circulating cytokine concentrations, and higher immunostimulatory circulating cytokine concentrations. To determine the clinical significance, we utilized human plasma samples from patients treated with elraglusib and correlated cytokine profiles with survival. Using paired tumor biopsies, we found that CD45+ tumor-infiltrating immune cells had lower expression of inhibitory immune checkpoints and higher expression of T-cell activation markers in post-elraglusib patient biopsies. These results introduce several immunomodulatory mechanisms of GSK-3 inhibition using elraglusib, providing a rationale for the clinical evaluation of elraglusib in combination with immunotherapy. Statement of significance: Pharmacologic inhibition of GSK-3 using elraglusib sensitizes tumor cells, activates immune cells for increased anti-tumor immunity, and synergizes with anti-PD-L1 immune checkpoint blockade. These results introduce novel biomarkers for correlations with response to therapy which could provide significant clinical utility and suggest that elraglusib, and other GSK-3 inhibitors, should be evaluated in combination with immune checkpoint blockade.

4.
Am J Cancer Res ; 12(1): 138-151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141009

RESUMEN

Tumor cells upregulate myriad proteins that are important for pH regulation, resulting in the acidification of the extracellular tumor microenvironment (TME). Abnormal pH is known to dampen immune function, resulting in a worsened anti-tumor immune response. Understanding how extrinsic alterations in pH modulate the interactions between immune cells and tumors cells will help elucidate opportunities for new therapeutic approaches. We observed that pH impacts the function of immune cells, both natural killer (NK) and T cells, which is relevant in the context of a highly acidic TME. Decreased NK and T cell activity was correlated with decreasing pH in a co-culture immune cell-mediated tumor cell-killing assay. The addition of pH-modulating drugs cariporide, lansoprazole, and acetazolamide to the co-culture assay was able to partially mitigate this dampened immune cell function. Treatment of colorectal cancer (CRC) cells with NHE1 inhibitor cariporide increased CRC cell-secreted cytokines involved in immune cell recruitment and activation and decreased cytokines involved in epithelial-mesenchymal transition (EMT). Cariporide treatment also decreased CRC cell shed TRAIL-R2, TRAIL-R3, and PD-L1 which is relevant in the context of immunotherapy. These experiments can help inform future investigations into how the pH of the tumor microenvironment may be extrinsically modulated to improve anti-tumor immune response in solid tumors such as colorectal cancer.

5.
Ann Palliat Med ; 11(2): 907-917, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34263642

RESUMEN

This review focuses on the role of palliative surgery in the care of the palliative care patient, and the appropriate role of the surgeon. The surgeon has much to bring to the palliative care team. The surgeon's role goes beyond the technical requirements of the palliative procedure, which itself must be strictly defined, and has recognized utility for improving quality of life in selected patients. These benefits may be substantial, but come at significant risk; requiring careful balancing of risks and benefits that is most completely understood by the surgeon. The surgeon's judgement can help determine which procedure best meets a patient's goals. The complex dialogue involved in the decision to undergo a palliative operation requires excellent communication between the palliative care team, the patient, and their family. Integrating the surgeon into the palliative care team could help with earlier initiation of those palliative discussions, and assist deliberation of palliative surgery. Surgeons also understand the importance of communication around palliative surgical interventions and have adapted several teaching models to the specifics of this crucial communication. A palliative team combining both surgeons and palliative care physicians may promote goal-concordant decision-making and remove barriers to communication and team engagement. The future of palliative surgery research will involve measures of success that go beyond physiology or mortality, to include more evaluations of communication and patient goals.


Asunto(s)
Cuidados Paliativos , Cirujanos , Comunicación , Humanos , Calidad de Vida
6.
Front Pharmacol ; 12: 751568, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34916936

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.

7.
Front Pharmacol ; 12: 747194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737704

RESUMEN

Biomarkers can contribute to clinical cancer therapeutics at multiple points along the patient's diagnostic and treatment course. Diagnostic biomarkers can screen or classify patients, while prognostic biomarkers predict their survival. Biomarkers can also predict treatment efficacy or toxicity and are increasingly important in development of novel cancer therapeutics. Strategies for biomarker identification have involved large-scale genomic and proteomic analyses. Pathway-specific biomarkers are already in use to assess the potential efficacy of immunotherapy and targeted cancer therapies. Judicious application of machine learning techniques can identify disease-relevant features from large data sets and improve predictive models. The future of biomarkers likely involves increasing utilization of liquid biopsy and multiple samplings to better understand tumor heterogeneity and identify drug resistance.

8.
Oncotarget ; 12(20): 1980-1991, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34611474

RESUMEN

Inflammatory cytokines, chemokines, and growth factors are molecular messengers that circulate and have the capability to modify the tumor microenvironment and impact therapeutic response. The characterization of soluble mediators as biomarkers for diagnosis and prognosis is of interest in oncology. We utilize the cytokinome to characterize the response of colorectal tumor cell lines to selected small-molecules in oncology as a proof-of-concept dataset with immunomodulatory analyte heat map rankings for drug and cell line combinations. We observed overall trends in drug class effects with MEK-, BRAF-, PARP-inhibitors, and Imipridones in cytokine, chemokine, and growth factor responses that may help guide therapy selection. MEK-inhibitor treatment downregulated analytes VEGF, CXCL9/MIG, and IL-8/CXCL8 and upregulated CXCL14/BRAK, Prolactin, and CCL5/RANTES. BRAF-inhibitor treatment downregulated VEGF and IL-8/CXCL8, while increasing soluble TRAIL-R2. Treatment with PARP-inhibitors decreased CXCL9/MIG, IL-8/CXCL8, CCL3/MIP-1 alpha, VEGF, and CXCL14/BRAK, while treatment increased soluble TRAIL-R2 and prolactin. Treatment with Imipridones decreased CCL3/MIP-1 alpha, VEGF, CXCL14/BRAK, IL-8/CXCL8, and Prolactin and increased CXCL5/ENA-78. We also observed differential responses to therapeutics depending on the mutational profile of the cell line. In the future, a similar but larger dataset may be utilized in the clinic to aid in the prediction of patient response to immunomodulatory therapies based on tumor genotype.

9.
Mol Cancer Ther ; 20(9): 1572-1583, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224362

RESUMEN

ONC212 is a fluorinated imipridone with preclinical efficacy against pancreatic and other malignancies. Although mitochondrial protease ClpP was identified as an ONC212-binding target, the mechanism leading to cancer cell death is incompletely understood. We investigated mitochondrial dysfunction and metabolic rewiring triggered by ONC212 in pancreatic cancer, a deadly malignancy with an urgent need for novel therapeutics. We found ClpP is expressed in pancreatic cancer cells and is required for ONC212 cytotoxicity. ClpX, the regulatory binding partner of ClpP, is suppressed upon ONC212 treatment. Immunoblotting and extracellular flux analysis showed ONC212 impairs oxidative phosphorylation (OXPHOS) with decrease in mitochondrial-derived ATP production. Although collapse of mitochondrial function is observed across ONC212-treated cell lines, only OXPHOS-dependent cells undergo apoptosis. Cells relying on glycolysis undergo growth arrest and upregulate glucose catabolism to prevent ERK1/2 inhibition and apoptosis. Glucose restriction or combination with glycolytic inhibitor 2-deoxy-D-glucose synergize with ONC212 and promote apoptosis in vitro and in vivo Thus, ONC212 is a novel mitocan targeting oxidative metabolism in pancreatic cancer, leading to different cellular outcomes based on divergent metabolic programs.


Asunto(s)
Endopeptidasa Clp/antagonistas & inhibidores , Glucólisis , Imidazoles/farmacología , Mitocondrias/efectos de los fármacos , Fosforilación Oxidativa , Neoplasias Pancreáticas/tratamiento farmacológico , Piridinas/farmacología , Pirimidinas/farmacología , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Mitocondrias/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Am Soc Clin Oncol Educ Book ; 41: 1-9, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33929879

RESUMEN

People experiencing homelessness are particularly vulnerable when diagnosed with pancreatic cancer. Patients with lower socioeconomic status have worse outcomes from pancreatic cancer as the result of disparities in access to treatment and barriers to navigation of the health care system. Patients with lower socioeconomic status, or who are vulnerably housed, are less likely to receive surgical treatment even when it is recommended by National Comprehensive Cancer Network guidelines. This disparity in access to surgical care explains much of the gap in pancreatic cancer outcomes. There are many factors that contribute to this disparity in surgical management of pancreatic cancer in people experiencing homelessness. These include a lack of reliable transportation, feeling unwelcome in the medical setting, a lack of primary care and health insurance, and implicit biases of health care providers, including racial bias. Solutions that focus on rectifying these problems include utilizing patient navigators, addressing implicit biases of all health care providers and staff, creating an environment that caters to the needs of patients experiencing homelessness, and improving their access to insurance and regional support networks. Implementing these potential solutions all the way from the individual provider to national safety nets could improve outcomes for patients with pancreatic cancer who are experiencing homelessness.


Asunto(s)
Personas con Mala Vivienda , Neoplasias Pancreáticas , Atención a la Salud , Personal de Salud , Humanos , Neoplasias Pancreáticas/epidemiología , Neoplasias Pancreáticas/cirugía
11.
Elife ; 102021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33443016

RESUMEN

Although the range of immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is variable, cytokine storm is observed in a subset of symptomatic individuals. To further understand the disease pathogenesis and, consequently, to develop an additional tool for clinicians to evaluate patients for presumptive intervention, we sought to compare plasma cytokine levels between a range of donor and patient samples grouped by a COVID-19 Severity Score (CSS) based on the need for hospitalization and oxygen requirement. Here we utilize a mutual information algorithm that classifies the information gain for CSS prediction provided by cytokine expression levels and clinical variables. Using this methodology, we found that a small number of clinical and cytokine expression variables are predictive of presenting COVID-19 disease severity, raising questions about the mechanism by which COVID-19 creates severe illness. The variables that were the most predictive of CSS included clinical variables such as age and abnormal chest x-ray as well as cytokines such as macrophage colony-stimulating factor, interferon-inducible protein 10, and interleukin-1 receptor antagonist. Our results suggest that SARS-CoV-2 infection causes a plethora of changes in cytokine profiles and that particularly in severely ill patients, these changes are consistent with the presence of macrophage activation syndrome and could furthermore be used as a biomarker to predict disease severity.


Asunto(s)
Algoritmos , COVID-19/diagnóstico , COVID-19/inmunología , Citocinas/sangre , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Quimiocina CXCL10/sangre , Humanos , Proteína Antagonista del Receptor de Interleucina 1/sangre , Interleucina-18/sangre , Pulmón/diagnóstico por imagen , Factor Estimulante de Colonias de Macrófagos/sangre , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
12.
medRxiv ; 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33269361

RESUMEN

Although the range of immune responses to COVID-19 infection is variable, cytokine storm is observed in many affected individuals. To further understand the disease pathogenesis and, consequently, to develop an additional tool for clinicians to evaluate patients for presumptive intervention we sought to compare plasma cytokine levels between a range of donor and patient samples grouped by a COVID-19 Severity Score (CSS) based on need for hospitalization and oxygen requirement. Here we utilize a mutual information algorithm that classifies the information gain for CSS prediction provided by cytokine expression levels and clinical variables. Using this methodology, we found that a small number of clinical and cytokine expression variables are predictive of presenting COVID-19 disease severity, raising questions about the mechanism by which COVID-19 creates severe illness. The variables that were the most predictive of CSS included clinical variables such as age and abnormal chest x-ray as well as cytokines such as macrophage colony-stimulating factor (M-CSF), interferon-inducible protein 10 (IP-10) and Interleukin-1 Receptor Antagonist (IL-1RA). Our results suggest that SARS-CoV-2 infection causes a plethora of changes in cytokine profiles and that particularly in severely ill patients, these changes are consistent with the presence of Macrophage Activation Syndrome and could furthermore be used as a biomarker to predict disease severity.

13.
Neoplasia ; 22(12): 725-744, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33142238

RESUMEN

ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.


Asunto(s)
Antineoplásicos/farmacología , Imidazoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Animales , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Estudios Clínicos como Asunto , Ensayos Clínicos como Asunto , Susceptibilidad a Enfermedades , Evaluación Preclínica de Medicamentos , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Imidazoles/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Piridinas/uso terapéutico , Pirimidinas/uso terapéutico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Resultado del Tratamiento
14.
Cancer Res ; 78(4): 853-864, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29233929

RESUMEN

Increasing evidence suggests the presence of minor cell subpopulations in prostate cancer that are androgen independent and poised for selection as dominant clones after androgen deprivation therapy. In this study, we investigated this phenomenon by stratifying cell subpopulations based on transcriptome profiling of 144 single LNCaP prostate cancer cells treated or untreated with androgen after cell-cycle synchronization. Model-based clustering of 397 differentially expressed genes identified eight potential subpopulations of LNCaP cells, revealing a previously unappreciable level of cellular heterogeneity to androgen stimulation. One subpopulation displayed stem-like features with a slower cell doubling rate, increased sphere formation capability, and resistance to G2-M arrest induced by a mitosis inhibitor. Advanced growth of this subpopulation was associated with enhanced expression of 10 cell-cycle-related genes (CCNB2, DLGAP5, CENPF, CENPE, MKI67, PTTG1, CDC20, PLK1, HMMR, and CCNB1) and decreased dependence upon androgen receptor signaling. In silico analysis of RNA-seq data from The Cancer Genome Atlas further demonstrated that concordant upregulation of these genes was linked to recurrent prostate cancers. Analysis of receiver operating characteristic curves implicates aberrant expression of these genes and could be useful for early identification of tumors that subsequently develop biochemical recurrence. Moreover, this single-cell approach provides a better understanding of how prostate cancer cells respond heterogeneously to androgen deprivation therapies and reveals characteristics of subpopulations resistant to this treatment.Significance: Illustrating the challenge in treating cancers with targeted drugs, which by selecting for drug resistance can drive metastatic progression, this study characterized the plasticity and heterogeneity of prostate cancer cells with regard to androgen dependence, defining the character or minor subpopulations of androgen-independent cells that are poised for clonal selection after androgen-deprivation therapy. Cancer Res; 78(4); 853-64. ©2017 AACR.


Asunto(s)
Andrógenos/metabolismo , Perfilación de la Expresión Génica/métodos , Neoplasias de la Próstata/genética , ARN/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/patología
15.
Prostate ; 75(15): 1790-801, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26332453

RESUMEN

BACKGROUND: Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). METHODS: Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. RESULTS: Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. CONCLUSIONS: Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. .


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Metilación de ADN , Proteínas de la Membrana/genética , Recurrencia Local de Neoplasia/genética , Neoplasias de la Próstata/genética , Anciano , Biomarcadores de Tumor/genética , Islas de CpG , Supervivencia sin Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Regiones Promotoras Genéticas , Próstata/patología , Próstata/cirugía , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...