Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 227(2)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38560786

RESUMEN

An attractive perfume is a complex mixture of compounds, some of which may be unpleasant on their own. This is also true for the volatile combinations from yeast fermentation products in vineyards and orchards when assessed by Drosophila. Here, we used crosses between a yeast strain with an attractive fermentation profile and another strain with a repulsive one and tested fly responses using a T-maze. QTL analysis reveals allelic variation in four yeast genes, namely PTC6, SAT4, YFL040W, and ARI1, that modulated expression levels of volatile compounds [assessed by gas chromatography-mass spectrometry (GC-MS)] and in different combinations, generated various levels of attractiveness. The parent strain that is more attractive to Drosophila has repulsive alleles at two of the loci, while the least attractive parent has attractive alleles. Behavioral assays using artificial mixtures mimicking the composition of odors from fermentation validated the results of GC-MS and QTL mapping, thereby directly connecting genetic variation in yeast to attractiveness in flies. This study can be used as a basis for dissecting the combination of olfactory receptors that mediate the attractiveness/repulsion of flies to yeast volatiles and may also serve as a model for testing the attractiveness of pest species such as Drosophila suzukii to their host fruit.


Asunto(s)
Drosophila , Sitios de Carácter Cuantitativo , Animales , Drosophila/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Masculino , Femenino , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Conducta Animal , Compuestos Orgánicos Volátiles/metabolismo , Odorantes/análisis
2.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37458780

RESUMEN

The hybrid yeast Zygosaccharomyces parabailii holds potential as a cell factory mainly because of its robustness in withstanding stressors that often characterize bio-based processes. However, a complex genome and a lack of gene editing tools hinder the capacity to engineer this yeast. In this work, we developed a CRISPR-Cas9 gene editing system for Z. parabailii that allows simultaneous disruption or deletion of both alleles of a gene. We evaluated four different gRNA expression systems consisting of combinations of tRNAs, tRNA and ribozyme or ribozymes as self-cleaving flanking elements and established that the most efficient systems used an RNA Pol II promoter followed by a 5'tRNA flanking the gRNA. This gRNA system was then used to construct a strain of Z. parabailii in which both alleles of DNL4 were inactivated and so relied on homologous recombination to repair double-stranded breaks. Our system can be used for gene inactivation in a wild-type strain and precise deletion with marker insertion in a dnl4 mutant. In some cases, we observed inter-chromosomal recombination around the site of the DSB that could cause loss of heterozygosity through gene conversion or deletion. Although an additional aspect that needs to be monitored during strain engineering, this phenomenon also offers opportunities to explore genome plasticity in hybrid yeasts.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Cromosomas , Pérdida de Heterocigocidad
3.
Food Microbiol ; 113: 104270, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37098430

RESUMEN

Saccharomyces cerevisiae is the yeast of choice for most inoculated wine fermentations worldwide. However, many other yeast species and genera display phenotypes of interest that may help address the environmental and commercial challenges the wine industry has been facing in recent years. This work aimed to provide, for the first time, a systematic phenotyping of all Saccharomyces species under winemaking conditions. For this purpose, we characterized the fermentative and metabolic properties of 92 Saccharomyces strains in synthetic grape must at two different temperatures. The fermentative potential of alternative yeasts was higher than expected, as nearly all strains were able to complete fermentation, in some cases more efficiently than commercial S. cerevisiae strains. Various species showed interesting metabolic traits, such as high glycerol, succinate and odour-active compound production, or low acetic acid production, compared to S. cerevisiae. Altogether, these results reveal that non-cerevisiae Saccharomyces yeasts are especially interesting for wine fermentation, as they may offer advantages over both S. cerevisiae and non-Saccharomyces strains. This study highlights the potential of alternative Saccharomyces species for winemaking, paving the way for further research and, potentially, for their industrial exploitation.


Asunto(s)
Saccharomyces , Vitis , Vino , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Saccharomyces/genética , Saccharomyces/metabolismo , Vino/análisis , Vitis/metabolismo , Ácido Acético/metabolismo , Fenotipo
4.
Front Microbiol ; 13: 1025132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439845

RESUMEN

Non-domesticated, wild Saccharomyces yeasts have promising characteristics for beer diversification, particularly when used in the generation of de novo interspecific hybrids. A major motivation for the current work was the question whether attractive novel Saccharomyces interspecific hybrids can be created for the production of exotic lager beers without using the genomic resources of the ale yeast Saccharomyces cerevisiae. Importantly, maltotriose utilization is an essential characteristic typically associated with domesticated ale/lager brewing strains. A high-throughput screening on nearly 200 strains representing all eight species of the Saccharomyces genus was conducted. Three Saccharomyces mikatae strains were able to aerobically grow on maltotriose as the sole carbon source, a trait until recently unidentified for this species. Our screening also confirmed the recently reported maltotriose utilization of the S. jurei strain D5095T. Remarkably, de novo hybrids between a maltotriose-utilizing S. mikatae or S. jurei strain and the maltotriose-negative Saccharomyces eubayanus strain CBS 12357T displayed heterosis and outperformed both parents with regard to aerobically utilizing maltotriose as the sole source of carbon. Indeed, the maximum specific growth rates on this sugar were comparable to the well-known industrial strain, Saccharomyces pastorianus CBS 1513. In lager brewing settings (oxygen-limited), the new hybrids were able to ferment maltose, while maltotriose was not metabolized. Favorable fruity esters were produced, demonstrating that the novel hybrids have the potential to add to the diversity of lager brewing.

5.
Methods Mol Biol ; 2513: 179-204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35781206

RESUMEN

Microorganisms offer a tremendous potential as cell factories, and they are indeed been used by humans since the previous centuries for biotransformations. Among them, yeasts combine the advantage of a unicellular state with a eukaryotic organization. Moreover, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycete budding yeast, is widely known for its peculiar tolerance to different stresses, among which are organic acids. Moreover, the recent reclassification of the species, including diverse hybrids, is further expanding both fundamental and applied interests. It is therefore reasonable that despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here we describe in detail the methods for determining chromosome number, size, and aneuploidy, transformation, classical target gene disruption or gene integration, and designing of episomal expression plasmids helpful for engineering the yeast Z. bailii .


Asunto(s)
Saccharomycetales , Zygosaccharomyces , Ácidos , Humanos , Saccharomyces cerevisiae , Saccharomycetales/genética , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo
6.
Fungal Divers ; 109(1): 27-55, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720775

RESUMEN

Here we review how evolving species concepts have been applied to understand yeast diversity. Initially, a phenotypic species concept was utilized taking into consideration morphological aspects of colonies and cells, and growth profiles. Later the biological species concept was added, which applied data from mating experiments. Biophysical measurements of DNA similarity between isolates were an early measure that became more broadly applied with the advent of sequencing technology, leading to a sequence-based species concept using comparisons of parts of the ribosomal DNA. At present phylogenetic species concepts that employ sequence data of rDNA and other genes are universally applied in fungal taxonomy, including yeasts, because various studies revealed a relatively good correlation between the biological species concept and sequence divergence. The application of genome information is becoming increasingly common, and we strongly recommend the use of complete, rather than draft genomes to improve our understanding of species and their genome and genetic dynamics. Complete genomes allow in-depth comparisons on the evolvability of genomes and, consequently, of the species to which they belong. Hybridization seems a relatively common phenomenon and has been observed in all major fungal lineages that contain yeasts. Note that hybrids may greatly differ in their post-hybridization development. Future in-depth studies, initially using some model species or complexes may shift the traditional species concept as isolated clusters of genetically compatible isolates to a cohesive speciation network in which such clusters are interconnected by genetic processes, such as hybridization.

7.
FEMS Yeast Res ; 21(8)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34791177

RESUMEN

Evolution has provided a vast diversity of yeasts that play fundamental roles in nature and society. This diversity is not limited to genotypically homogeneous species with natural interspecies hybrids and allodiploids that blur species boundaries frequently isolated. Thus, life cycle and the nature of breeding systems have profound effects on genome variation, shaping heterozygosity, genotype diversity and ploidy level. The apparent enrichment of hybrids in industry-related environments suggests that hybridization provides an adaptive route against stressors and creates interest in developing new hybrids for biotechnological uses. For example, in the Saccharomyces genus where regulatory circuits controlling cell identity, mating competence and meiosis commitment have been extensively studied, this body of knowledge is being used to combine interesting traits into synthetic F1 hybrids, to bypass F1 hybrid sterility and to dissect complex phenotypes by bulk segregant analysis. Although these aspects are less known in other industrially promising yeasts, advances in whole-genome sequencing and analysis are changing this and new insights are being gained, especially in the food-associated genera Zygosaccharomyces and Kluyveromyces. We discuss this new knowledge and highlight how deciphering cell identity circuits in these lineages will contribute significantly to identify the genetic determinants underpinning complex phenotypes and open new avenues for breeding programmes.


Asunto(s)
Kluyveromyces , Saccharomyces , Zygosaccharomyces , Animales , Hibridación Genética , Kluyveromyces/genética , Estadios del Ciclo de Vida , Zygosaccharomyces/genética
8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518218

RESUMEN

Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear-mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type-dependent and -independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.


Asunto(s)
Variación Genética/genética , Sitios de Carácter Cuantitativo/genética , Saccharomyces/genética , Ácido Acético/metabolismo , Frío , Etanol/metabolismo , Fermentación/genética , Genoma Fúngico/genética , Mitocondrias/genética , Fenotipo , Azúcares/metabolismo
9.
Front Genet ; 11: 404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457798

RESUMEN

The formation of interspecific hybrids results in the coexistence of two diverged genomes within the same nucleus. It has been hypothesized that negative epistatic interactions and regulatory interferences between the two sub-genomes may elicit a so-called genomic shock involving, among other alterations, broad transcriptional changes. To assess the magnitude of this shock in hybrid yeasts, we investigated the transcriptomic differences between a newly formed Saccharomyces cerevisiae × Saccharomyces uvarum diploid hybrid and its diploid parentals, which diverged ∼20 mya. RNA sequencing (RNA-Seq) based allele-specific expression (ASE) analysis indicated that gene expression changes in the hybrid genome are limited, with only ∼1-2% of genes significantly altering their expression with respect to a non-hybrid context. In comparison, a thermal shock altered six times more genes. Furthermore, differences in the expression between orthologous genes in the two parental species tended to be diminished for the corresponding homeologous genes in the hybrid. Finally, and consistent with the RNA-Seq results, we show a limited impact of hybridization on chromatin accessibility patterns, as assessed with assay for transposase-accessible chromatin using sequencing (ATAC-Seq). Overall, our results suggest a limited genomic shock in a newly formed yeast hybrid, which may explain the high frequency of successful hybridization in these organisms.

10.
BMC Microbiol ; 18(1): 9, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29368646

RESUMEN

BACKGROUND: Microbial arrays, with a large number of different strains on a single plate printed with robotic precision, underpin an increasing number of genetic and genomic approaches. These include Synthetic Genetic Array analysis, high-throughput Quantitative Trait Loci (QTL) analysis and 2-hybrid techniques. Measuring the growth of individual colonies within these arrays is an essential part of many of these techniques but is useful for any work with arrays. Measurement is typically done using intermittent imagery fed into complex image analysis software, which is not especially accurate and is challenging to use effectively. We have developed a simple and fast alternative technique that uses a pinning robot and a commonplace microplate reader to continuously measure the thickness of colonies growing on solid agar, complemented by a technique for normalizing the amount of cells initially printed to each spot of the array in the first place. We have developed software to automate the process of combining multiple sets of readings, subtracting agar absorbance, and visualizing colony thickness changes in a number of informative ways. RESULTS: The "PHENOS" pipeline (PHENotyping On Solid media), optimized for Saccharomyces yeasts, produces highly reproducible growth curves and is particularly sensitive to low-level growth. We have empirically determined a formula to estimate colony cell count from an absorbance measurement, and shown this to be comparable with estimates from measurements in liquid. We have also validated the technique by reproducing the results of an earlier QTL study done with conventional liquid phenotyping, and found PHENOS to be considerably more sensitive. CONCLUSIONS: "PHENOS" is a cost effective and reliable high-throughput technique for quantifying growth of yeast arrays, and is likely to be equally very useful for a range of other types of microbial arrays. A detailed guide to the pipeline and software is provided with the installation files at https://github.com/gact/phenos .


Asunto(s)
Recuento de Colonia Microbiana/instrumentación , Recuento de Colonia Microbiana/métodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/crecimiento & desarrollo , Agar , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo , Genómica/métodos , Genotipo , Procesamiento de Imagen Asistido por Computador/métodos , Fenotipo , Saccharomyces cerevisiae/citología , Programas Informáticos
11.
Genetics ; 206(2): 717-750, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28592505

RESUMEN

Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Evolución Biológica , Transferencia de Gen Horizontal , Genética de Población , Genotipo , Fenotipo
13.
J Microbiol Biotechnol ; 26(11): 1891-1907, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27435537

RESUMEN

Yeasts that are present in marine environments have evolved to survive hostile environments that are characterized by high exogenous salt content, high concentrations of inhibitory compounds, and low soluble carbon and nitrogen levels. Therefore, yeasts isolated from marine environments could have interesting characteristics for industrial applications. However, the application of marine yeast in research or industry is currently very limited owing to the lack of a suitable isolation method. Current methods for isolation suffer from fungal interference and/or low number of yeast isolates. In this paper, an efficient and non-laborious isolation method has been developed and successfully isolated large numbers of yeasts without bacterial or fungal growth. The new method includes a three-cycle enrichment step followed by an isolation step and a confirmation step. Using this method, 116 marine yeast strains were isolated from 14 marine samples collected in the UK, Egypt, and the USA. These strains were further evaluated for the utilization of fermentable sugars (glucose, xylose, mannitol, and galactose) using a phenotypic microarray assay. Seventeen strains with higher sugar utilization capacity than the reference terrestrial yeast Saccharomyces cerevisiae NCYC 2592 were selected for identification by sequencing of the ITS and D1/D2 domains. These strains belonged to six species: S. cerevisiae, Candida tropicalis, Candida viswanathii, Wickerhamomyces anomalus, Candida glabrata, and Pichia kudriavzevii. The ability of these strains for improved sugar utilization using seawater-based media was confirmed and, therefore, they could potentially be utilized in fermentations using marine biomass in seawater media, particularly for the production of bioethanol and other biochemical products.


Asunto(s)
Técnicas Microbiológicas/métodos , Agua de Mar/microbiología , Levaduras/aislamiento & purificación , Etanol/metabolismo , Fermentación , Microbiología Industrial , Xilosa/metabolismo , Levaduras/clasificación , Levaduras/genética , Levaduras/metabolismo
14.
Cold Spring Harb Protoc ; 2016(7)2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27371602

RESUMEN

Budding yeast strains used in the laboratory have had a checkered past. Historically, the choice of strain for any particular experiment depended on the suitability of the strain for the topic of study (e.g., cell cycle vs. meiosis). Many laboratory strains had poor fermentation properties and were not representative of the robust strains used for domestic purposes. Most strains were related to each other, but investigators usually had only vague notions about the extent of their relationships. Isogenicity was difficult to confirm before the advent of molecular genetic techniques. However, their ease of growth and manipulation in laboratory conditions made them "the model" model organism, and they still provided a great deal of fundamental knowledge. Indeed, more than one Nobel Prize has been won using them. Most of these strains continue to be powerful tools, and isogenic derivatives of many of them-including entire collections of deletions, overexpression constructs, and tagged gene products-are now available. Furthermore, many of these strains are now sequenced, providing intimate knowledge of their relationships. Recent collections, new isolates, and the creation of genetically tractable derivatives have expanded the available strains for experiments. But even still, these laboratory strains represent a small fraction of the diversity of yeast. The continued development of new laboratory strains will broaden the potential questions that can be posed. We are now poised to take advantage of this diversity, rather than viewing it as a detriment to controlled experiments.


Asunto(s)
Evolución Molecular , Genética Microbiana/métodos , Técnicas Microbiológicas/métodos , Biología Molecular/métodos , Saccharomyces cerevisiae/genética , Genética Microbiana/historia , Historia del Siglo XX , Historia del Siglo XXI , Técnicas Microbiológicas/historia , Biología Molecular/historia
15.
Genetics ; 203(4): 1659-68, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27334270

RESUMEN

Inverted chromosome duplications or palindromes are linked with genetic disorders and malignant transformation. They are considered by-products of DNA double-strand break (DSB) repair: the homologous recombination (HR) and the nonhomologous end joining (NHEJ). Palindromes near chromosome ends are often triggered by telomere losses. An important question is to what extent their formation depends upon DSB repair mechanisms. Here we addressed this question using yeast genetics and comparative genomic hybridization. We induced palindrome formation by passaging cells lacking any form of telomere maintenance (telomerase and telomere recombination). Surprisingly, we found that DNA ligase 4, essential for NHEJ, did not make a significant contribution to palindrome formation induced by telomere losses. Moreover RAD51, important for certain HR-derived mechanisms, had little effect. Furthermore RAD52, which is essential for HR in yeast, appeared to decrease the number of palindromes in cells proliferating without telomeres. This study also uncovered an important role for Rev3 and Rev7 (but not for Pol32) subunits of polymerase ζ in the survival of cells undergoing telomere losses and forming palindromes. We propose a model called short-inverted repeat-induced synthesis in which DNA synthesis, rather than DSB repair, drives the inverted duplication triggered by telomere dysfunction.


Asunto(s)
ADN Ligasa (ATP)/genética , ADN Polimerasa Dirigida por ADN/genética , Secuencias Invertidas Repetidas/genética , Proteínas de Saccharomyces cerevisiae/genética , Telomerasa/genética , Reparación del ADN por Unión de Extremidades/genética , Recombinación Homóloga/genética , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Reparación del ADN por Recombinación/genética , Saccharomyces cerevisiae/genética , Telómero , Homeostasis del Telómero
16.
Aging Cell ; 15(3): 553-62, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27004475

RESUMEN

Telomere attrition is linked to cancer, diabetes, cardiovascular disease and aging. This is because telomere losses trigger further genomic modifications, culminating with loss of cell function and malignant transformation. However, factors regulating the transition from cells with short telomeres, to cells with profoundly altered genomes, are little understood. Here, we use budding yeast engineered to lack telomerase and other forms of telomere maintenance, to screen for such factors. We show that initially, different DNA damage checkpoint proteins act together with Exo1 and Mre11 nucleases, to inhibit proliferation of cells undergoing telomere attrition. However, this situation changes when survivors lacking telomeres emerge. Intriguingly, checkpoint pathways become tolerant to loss of telomeres in survivors, yet still alert to new DNA damage. We show that Rif1 is responsible for the checkpoint tolerance and proliferation of these survivors, and that is also important for proliferation of cells with a broken chromosome. In contrast, Exo1 drives extensive genomic modifications in survivors. Thus, the conserved proteins Rif1 and Exo1 are critical for survival and evolution of cells with lost telomeres.


Asunto(s)
Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Senescencia Celular/genética , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Endonucleasas/metabolismo , Eliminación de Gen , Viabilidad Microbiana/genética , Modelos Biológicos , Fenotipo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo
17.
Nucleic Acids Res ; 44(5): e41, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26578563

RESUMEN

With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter-ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing ('forward genomics') demonstrates a strategy that could similarly enable rapid screens in many other microbes.


Asunto(s)
Escherichia coli/genética , Biblioteca de Genes , Genoma Bacteriano , Genómica/métodos , Mutagénesis Insercional/métodos , Mutación , Algoritmos , Bacteriófago P1/genética , Escherichia coli/efectos de los fármacos , Etilnitrosourea/farmacología , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
18.
PLoS One ; 10(8): e0135626, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26284784

RESUMEN

Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.


Asunto(s)
Etanol/metabolismo , Fermentación/efectos de los fármacos , Formiatos/farmacología , Saccharomyces/efectos de los fármacos , Saccharomyces/aislamiento & purificación , Lignina/metabolismo , Fenotipo , Saccharomyces/metabolismo , Saccharomyces/fisiología , Estrés Fisiológico/efectos de los fármacos
19.
Yeast ; 32(1): 29-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24733517

RESUMEN

Phenylethanol has a characteristic rose-like aroma that makes it a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbour an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source, such as glucose, provides an economically attractive alternative for phenylalanine bioconversion. In this study, synthetic genetic array (SGA) screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to underlie the transcriptional upregulation of ARO10 during growth, with ammonium sulphate as the sole nitrogen source. Physiological characterization revealed that the aro8Δ mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8Δ mutation also stimulated phenylethanol production when combined with other, previously documented, mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced >3 mm phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products.


Asunto(s)
Eliminación de Gen , Glucosa/metabolismo , Alcohol Feniletílico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Transaminasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminasas/metabolismo
20.
PLoS One ; 9(8): e103233, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25116161

RESUMEN

Saccharomyces cerevisiae is the micro-organism of choice for the conversion of monomeric sugars into bioethanol. Industrial bioethanol fermentations are intrinsically stressful environments for yeast and the adaptive protective response varies between strain backgrounds. With the aim of identifying quantitative trait loci (QTL's) that regulate phenotypic variation, linkage analysis on six F1 crosses from four highly divergent clean lineages of S. cerevisiae was performed. Segregants from each cross were assessed for tolerance to a range of stresses encountered during industrial bioethanol fermentations. Tolerance levels within populations of F1 segregants to stress conditions differed and displayed transgressive variation. Linkage analysis resulted in the identification of QTL's for tolerance to weak acid and osmotic stress. We tested candidate genes within loci identified by QTL using reciprocal hemizygosity analysis to ascertain their contribution to the observed phenotypic variation; this approach validated a gene (COX20) for weak acid stress and a gene (RCK2) for osmotic stress. Hemizygous transformants with a sensitive phenotype carried a COX20 allele from a weak acid sensitive parent with an alteration in its protein coding compared with other S. cerevisiae strains. RCK2 alleles reveal peptide differences between parental strains and the importance of these changes is currently being ascertained.


Asunto(s)
Etanol/metabolismo , Fermentación , Ligamiento Genético , Variación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Adaptación Biológica , Alelos , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Fúngicos , Cruzamientos Genéticos , Haploidia , Heterocigoto , Datos de Secuencia Molecular , Fenotipo , Sitios de Carácter Cuantitativo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...