Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gut ; 72(6): 1081-1092, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36167663

RESUMEN

OBJECTIVES: Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. DESIGN: We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real-time bioenergetic profile analysis (Seahorse). RESULTS: Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction increases mitochondrial reactive oxygen species production leading to the premature death of neutrophilsthrough apoptosis, especially in oxidative environment. The decreased functional neutrophils in tissues might explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. CONCLUSION: These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Neutrófilos/metabolismo , Supervivencia Celular , Colitis/inducido químicamente , Colitis/prevención & control , Inflamación/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas Adaptadoras de Señalización CARD/metabolismo
2.
Blood Adv ; 4(16): 3853-3863, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32810223

RESUMEN

Iron is required for the oxidative response of neutrophils to allow the production of reactive oxygen species (ROS). However, neutrophil function may be severely altered in conditions of iron overload, as observed in chronically transfused patients. Therefore, a tight regulation of neutrophil iron homeostasis seems to be critical for avoiding iron toxicity. Hepcidin is the key iron regulator in organisms; however, no studies have investigated its role in maintaining neutrophil iron homeostasis or characterized neutrophil function in patients with hereditary hemochromatosis (HH), a common iron overload genetic disorder that results from a defect in hepcidin production. To explore these issues, we studied 2 mouse models of iron overload: an experimentally induced iron overload model (EIO), in which hepcidin is increased, and a genetic HH model of iron overload with a deletion of hepatic hepcidin. We found that iron-dependent increase of hepatic hepcidin results in neutrophil intracellular iron trapping and consecutive defects in oxidative burst activity. In contrast, in both HH mouse models and HH patients, the lack of hepcidin expression protects neutrophils from toxic iron accumulation. Moreover, systemic iron overload correlated with a surprising neutrophil priming and resulted in a more powerful oxidative burst. Indeed, important factors in neutrophil priming and activation, such as tumor necrosis factor α (TNF-α), VCAM-1, and ICAM-1 are increased in the plasma of HH patients and are associated with an increase in HH neutrophil phagocytosis capacity and a decrease in L-selectin surface expression. This is the first study to characterize neutrophil iron homeostasis and associated functions in patients with HH.


Asunto(s)
Hemocromatosis , Sobrecarga de Hierro , Animales , Hemocromatosis/genética , Hepcidinas/genética , Humanos , Hierro , Ratones , Neutrófilos
3.
Science ; 368(6487): 186-189, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32273468

RESUMEN

Bleeding and altered iron distribution occur in multiple gastrointestinal diseases, but the importance and regulation of these changes remain unclear. We found that hepcidin, the master regulator of systemic iron homeostasis, is required for tissue repair in the mouse intestine after experimental damage. This effect was independent of hepatocyte-derived hepcidin or systemic iron levels. Rather, we identified conventional dendritic cells (cDCs) as a source of hepcidin that is induced by microbial stimulation in mice, prominent in the inflamed intestine of humans, and essential for tissue repair. cDC-derived hepcidin acted on ferroportin-expressing phagocytes to promote local iron sequestration, which regulated the microbiota and consequently facilitated intestinal repair. Collectively, these results identify a pathway whereby cDC-derived hepcidin promotes mucosal healing in the intestine through means of nutritional immunity.


Asunto(s)
Células Dendríticas/metabolismo , Microbioma Gastrointestinal , Hepcidinas/metabolismo , Enfermedades Intestinales/microbiología , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Hierro/metabolismo , Animales , Proteínas de Transporte de Catión/metabolismo , Trasplante de Microbiota Fecal , Eliminación de Gen , Hepcidinas/genética , Homeostasis , Ratones , Ratones Mutantes , Fagocitos/metabolismo
4.
J Clin Invest ; 130(1): 329-334, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31600168

RESUMEN

Novel approaches for adjunctive therapy are urgently needed for complicated infections and patients with compromised immunity. Necrotizing fasciitis (NF) is a destructive skin and soft tissue infection. Despite treatment with systemic antibiotics and radical debridement of necrotic tissue, lethality remains high. The key iron regulatory hormone hepcidin was originally identified as a cationic antimicrobial peptide (AMP), but its putative expression and role in the skin, a major site of AMP production, have never been investigated. We report here that hepcidin production is induced in the skin of patients with group A Streptococcus (GAS) NF. In a GAS-induced NF model, mice lacking hepcidin in keratinocytes failed to restrict systemic spread of infection from an initial tissue focus. Unexpectedly, this effect was due to its ability to promote production of the CXCL1 chemokine by keratinocytes, resulting in neutrophil recruitment. Unlike CXCL1, hepcidin is resistant to degradation by major GAS proteases and could therefore serve as a reservoir to maintain steady-state levels of CXCL1 in infected tissue. Finally, injection of synthetic hepcidin at the site of infection can limit or completely prevent systemic spread of GAS infection, suggesting that hepcidin agonists could have a therapeutic role in NF.


Asunto(s)
Epidermis/metabolismo , Fascitis Necrotizante/metabolismo , Hepcidinas/metabolismo , Neutrófilos/metabolismo , Infecciones Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Animales , Quimiocina CXCL1/metabolismo , Modelos Animales de Enfermedad , Epidermis/microbiología , Epidermis/patología , Fascitis Necrotizante/patología , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones , Ratones Noqueados , Neutrófilos/patología , Infecciones Estreptocócicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA