Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(14): 3779-3784, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38552645

RESUMEN

The processing of vertical graphene nanowalls (VGNWs) via laser irradiation is proposed as a means to modulate their physicochemical properties. The effects of the number of applied pulses and fluence of each pulse are examined. Raman spectroscopy studies the effect of irradiation on the chemical structure of the VGNWs. Results show a decrease in density of defects and number of layers, which points toward a mechanism including evaporation of amorphous or loosely bonded C from defective points and recrystallization of graphene. Moreover, the effect of laser irradiation parameters on the morphology of Mo thin films deposited on VGNWs is investigated. The received thermal dosage results in the formation of particles. In this case, the number of pulses and pulse fluence are found to affect the size and distribution of these particles. The study provides a novel approach for the functionalization of VGNWs via laser irradiation, which can be extended to other graphene-based nanostructures.

2.
Nanoscale Adv ; 1(9): 3413-3423, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36133530

RESUMEN

The development of dynamically responsive 3D photonic elements, which is crucial for the design of active integrated photonic circuits, requires the incorporation of material systems with fast and tunable response. To this end, semiconductor quantum dots have been widely used to perform as the active material system to be integrated; nonetheless, multiple-step processing is usually required for the active functions to be preserved, thereby restricting functionality of integrated 3D quantum photonic elements mostly to the infrared. Here, we report a simple scheme for the realization of visible light active 3D photonic devices by combining direct laser writing with two-photon absorption and in situ synthesis of cadmium sulfide (CdS) nanoparticles. The novel active 3D printable hybrid material is synthesized by crosslinking precursors of CdS quantum dots into a photo-structurable organic-inorganic zirconium-silicon hybrid composite integrating functional properties of both high spatial resolution and high third-order nonlinearity into the photonic matrix. As a proof-of-demonstration for 3D printed active photonic devices, woodpile photonic crystals with an inlayer periodicity down to 500 nm are successfully fabricated showing clear photonic stop bands in the visible spectral region, while for the first time, evidence of an ultrafast dynamic response in the visible is also demonstrated.

3.
Opt Express ; 23(13): 17191-204, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26191728

RESUMEN

The role of thin-film metal transducers in ultrafast laser-generated longitudinal acoustic phonons in Si (100) monocrystal substrates is investigated. For this purpose degenerate femtosecond pump-probe transient reflectivity measurements are performed probing the Brillouin scattering of laser photons from phonons. The influence of the metallic electron-phonon coupling factor, acoustical impedance and film thickness is examined. An optical transfer matrix method for thin films is applied to extract the net acoustic strain relative strength for the various transducer cases, taking into account the experimental probing efficiency. In addition, a theoretical thermo-mechanical approach based on the combination of a revised two-temperature model and elasticity theory is applied and supports the experimental findings. The results show highly efficient generation of acoustic phonons in Si when Ti transducers are used. This demonstrates the crucial role of the transducer's high electron-phonon coupling constant and high compressive yield strength, as well as strong acoustical impedance matching with the semiconductor substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...