Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29459, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699706

RESUMEN

The aim of this study is to explore the pharmacological properties of the essential oil derived from Ptychotis verticillata Duby (PVEO), a medicinal plant native to Morocco, focusing on its antidiabetic, anti-tyrosinase, and anti-inflammatory effects. Additionally, the study aims to characterize the phytochemical composition of PVEO and evaluate its potential as a natural therapeutic alternative for various health conditions. To achieve this, phytochemical analysis was conducted using gas chromatography-mass spectrometry (GC-MS). Furthermore, in vitro assessments were conducted to investigate PVEO's antidiabetic activity by inhibiting α-amylase, xanthine oxidase, and α-glucosidase. Tests were also undertaken to evaluate the anti-inflammatory effect of PVEO on RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as its efficacy as an anti-tyrosinase agent and its lipoxygenase inhibition activity. The results of the phytochemical analysis revealed that PVEO is rich in terpene compounds, with percentages of 40.35 % γ-terpinene, 22.40 % carvacrol, and 19.77 % ß-cymene. Moreover, in vitro evaluations demonstrated that PVEO exhibits significant inhibitory activity against α-amylase, xanthine oxidase, and α-glucosidase, indicating promising antidiabetic, and anti-gout potential. Furthermore, PVEO showed significant anti-tyrosinase activity, with an IC50 of 27.39 ± 0.44 µg/mL, and remarkable lipoxygenase inhibition (87.33 ± 2.6 %), suggesting its candidacy for dermatoprotection. Additionally, PVEO displayed a dose-dependent capacity to attenuate the production of NO and PGE2, two inflammatory mediators implicated in various pathologies, without compromising cellular viability. The findings of this study provide a solid foundation for future research on natural therapies and the development of new drugs, highlighting the therapeutic potential of PVEO in the treatment of gout, diabetes, pigmentation disorders, and inflammation.

2.
Front Chem ; 12: 1383731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660570

RESUMEN

Introduction: This study investigates the biological activities of Lavandula pinnata essential oil (LPEO), an endemic lavender species from the Canary Islands, traditionally used in treating various ailments. Methods: LPEO was extracted by hydrodistillation and analyzed using GC-MS. Antioxidant activity was assessed by DPPH radical scavenging and total antioxidant capacity assays. Antimicrobial activity was evaluated by disc diffusion, MIC, MBC, and MFC determination against bacterial (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa) and fungal (Candida glabrata, Rhodotorula glutinis, Aspergillus niger, Penicillium digitatum) strains. Antidiabetic and anti-gout potential were investigated through α-amylase, α-glucosidase, and xanthine oxidase inhibition assays. Antityrosinase activity was determined using a modified dopachrome method. Cytotoxicity was assessed by MTT assay against breast (MCF-7, MDA-MB-468), liver (HepG2), colon (HCT-15) cancer cells, and normal cells (PBMCs). Results and discussion: LPEO exhibits potent antiradical activity (IC50 = 148.33 ± 2.48 µg/mL) and significant antioxidant capacity (TAC = 171.56 ± 2.34 µg AA/mg of EO). It demonstrates notable antibacterial activity against four strains (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa) with inhibition zones ranging from 18.70 ± 0.30 mm to 29.20 ± 0.30 mm, along with relatively low MIC and MBC values. LPEO displays significant antifungal activity against four strains (Candida glabrata, Rhodotorula glutinis, Aspergillus niger, and Penicillium digitatum) with a fungicidal effect at 1 mg/mL, surpassing the positive control (cycloheximide), and MIC and MFC values indicating a fungicidal effect. It exhibits substantial inhibition of xanthine oxidase enzyme (IC50 = 26.48 ± 0.90 µg/mL), comparable to allopurinol, and marked inhibitory effects on α-amylase (IC50 = 31.56 ± 0.46 µg/mL) and α-glucosidase (IC50 = 58.47 ± 2.35 µg/mL) enzymes.The enzyme tyrosinase is inhibited by LPEO (IC50 = 29.11 ± 0.08 mg/mL). LPEO displays moderate cytotoxic activity against breast, liver, and colon cancer cells, with low toxicity towards normal cells (PBMC). LPEO exhibits greater selectivity than cisplatin for breast (MCF-7) and colon (HCT-15) cancer cells but lower selectivity for liver (HepG2) and metastatic breast (MDA-MB-468) cancer cells. These findings suggest the potential of LPEO as an antioxidant, antimicrobial, anti-gout, antidiabetic, and anticancer agent.

3.
Sci Rep ; 14(1): 8325, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594363

RESUMEN

Although giant fennel is recognized as a "superfood" rich in phytochemicals with antioxidant activity, research into the antibacterial properties of its fruits has been relatively limited, compared to studies involving the root and aerial parts of the plant. In this study, seven solvents-acetone, methanol, ethanol, ethyl acetate, chloroform, water, and hexane-were used to extract the chemical constituents of the fruit of giant fennel (Ferula communis), a species of flowering plant in the carrot family Apiaceae. Specific attributes of these extracts were investigated using in silico simulations and in vitro bioassays. High-performance liquid chromatography equipped with a diode-array detector (HPLC-DAD) identified 15 compounds in giant fennel extract, with p-coumaric acid, 3-hydroxybenzoic acid, sinapic acid, and syringic acid being dominant. Among the solvents tested, ethanol demonstrated superior antioxidant activity and phenolic and flavonoid contents. F. communis extracts showed advanced inhibition of gram-negative pathogens (Escherichia coli and Proteus mirabilis) and variable antifungal activity against tested strains. Molecular docking simulations assessed the antioxidative, antibacterial, and antifungal properties of F. communis, facilitating innovative therapeutic development through predicted compound-protein interactions. In conclusion, the results validate the ethnomedicinal use and potential of F. communis. This highlights its significance in natural product research and ethnopharmacology.


Asunto(s)
Ferula , Frutas , Solventes/química , Frutas/química , Antifúngicos/farmacología , Extractos Vegetales/química , Antioxidantes/química , Simulación del Acoplamiento Molecular , Antibacterianos/química , Etanol/análisis
4.
Front Chem ; 12: 1334028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435667

RESUMEN

Cistus albidus: L., also known as Grey-leaved rockrose and locally addressed as stab or tûzzâla lbîda, is a plant species with a well-established reputation for its health-promoting properties and traditional use for the treatment of various diseases. This research delves into exploring the essential oil extracted from the aerial components of Cistus albidus (referred to as CAEO), aiming to comprehend its properties concerning antioxidation, anti-inflammation, antimicrobial efficacy, and cytotoxicity. Firstly, a comprehensive analysis of CAEO's chemical composition was performed through Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, four complementary assays were conducted to assess its antioxidant potential, including DPPH scavenging, ß-carotene bleaching, ABTS scavenging, and total antioxidant capacity assays. The investigation delved into the anti-inflammatory properties via the 5-lipoxygenase assay and the antimicrobial effects of CAEO against various bacterial and fungal strains. Additionally, the research investigated the cytotoxic effects of CAEO on two human breast cancer subtypes, namely, MCF-7 and MDA-MB-231. Chemical analysis revealed camphene as the major compound, comprising 39.21% of the composition, followed by α-pinene (19.01%), bornyl acetate (18.32%), tricyclene (6.86%), and melonal (5.44%). Notably, CAEO exhibited robust antioxidant activity, as demonstrated by the low IC50 values in DPPH (153.92 ± 4.30 µg/mL) and ß-carotene (95.25 ± 3.75 µg/mL) assays, indicating its ability to counteract oxidative damage. The ABTS assay and the total antioxidant capacity assay also confirmed the potent antioxidant potential with IC50 values of 120.51 ± 3.33 TE µmol/mL and 458.25 ± 3.67 µg AAE/mg, respectively. In terms of anti-inflammatory activity, CAEO displayed a substantial lipoxygenase inhibition at 0.5 mg/mL. Its antimicrobial properties were broad-spectrum, although some resistance was observed in the case of Escherichia coli and Staphylococcus aureus. CAEO exhibited significant dose-dependent inhibitory effects on tumor cell lines in vitro. Additionally, computational analyses were carried out to appraise the physicochemical characteristics, drug-likeness, and pharmacokinetic properties of CAEO's constituent molecules, while the toxicity was assessed using the Protox II web server.

5.
Life (Basel) ; 13(11)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-38004275

RESUMEN

Juncus acutus, acknowledged through its indigenous nomenclature "samar", is part of the Juncaceae taxonomic lineage, bearing considerable import as a botanical reservoir harboring conceivable therapeutic attributes. Its historical precedence in traditional curative methodologies for the alleviation of infections and inflammatory conditions is notable. In the purview of Eastern traditional medicine, Juncus species seeds find application for their remedial efficacy in addressing diarrhea, while the botanical fruits are subjected to infusion processes targeting the attenuation of symptoms associated with cold manifestations. The primary objective of this study was to unravel the phytochemical composition of distinct constituents within J. acutus, specifically leaves (JALE) and roots (JARE), originating from the indigenous expanse of the Nador region in northeastern Morocco. The extraction of plant constituents was executed utilizing an ethanol-based extraction protocol. The subsequent elucidation of chemical constituents embedded within the extracts was accomplished employing analytical techniques based on high-performance liquid chromatography (HPLC). For the purpose of in vitro antioxidant evaluation, a dual approach was adopted, encompassing the radical scavenging technique employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the total antioxidant capacity (TAC) assay. The acquired empirical data showcase substantial radical scavenging efficacy and pronounced relative antioxidant activity. Specifically, the DPPH and TAC methods yielded values of 483.45 ± 4.07 µg/mL and 54.59 ± 2.44 µg of ascorbic acid (AA)/mL, respectively, for the leaf extracts. Correspondingly, the root extracts demonstrated values of 297.03 ± 43.3 µg/mL and 65.615 ± 0.54 µg of AA/mL for the DPPH and TAC methods. In the realm of antimicrobial evaluation, the assessment of effects was undertaken through the agar well diffusion technique. The minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration were determined for each extract. The inhibitory influence of the ethanol extracts was observed across bacterial strains including Staphylococcus aureus, Micrococcus luteus, and Pseudomonas aeruginosa, with the notable exception of Escherichia coli. However, fungal strains such as Candida glabrata and Rhodotorula glutinis exhibited comparatively lower resistance, whereas Aspergillus niger and Penicillium digitatum exhibited heightened resistance, evincing negligible antifungal activity. An anticipatory computational assessment of pharmacokinetic parameters was conducted, complemented by the application of the Pro-tox II web tool to delineate the potential toxicity profile of compounds intrinsic to the studied extracts. The culmination of these endeavors underpins the conceivable prospects of the investigated extracts as promising candidates for oral medicinal applications.

6.
Plants (Basel) ; 12(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836118

RESUMEN

Throughout history, essential oils have been employed for their pleasing scents and potential therapeutic benefits. These oils have shown promise in various areas, including aromatherapy, personal care products, natural remedies, and even as alternatives to traditional cleaning agents or pest control solutions. The study aimed to explore the chemical makeup, antioxidant, and antibacterial properties of Origanum compactum Benth., Salvia officinalis L., and Syzygium aromaticum (L.) Merr. et Perry. Initially, the composition of the three essential oils, O. compactum (HO), S. officinalis (HS), and S. aromaticum (HC) was analyzed using GC-MS technology, revealing significant differences in the identified compounds. α-thujone emerged as the predominant volatile component in the oils, making up 78.04% of the composition, followed by eugenol, which constituted 72.66% and 11.22% of the HC and HO oils, respectively. To gauge antioxidant capabilities, tests involving DPPH scavenging capacity and total antioxidant capacity were conducted. Antioxidant activity was determined through the phosphomolybdate test and the DPPH• radical scavenging activity, with the HO essential oil displaying significant scavenging capacity (IC50 of 0.12 ± 0.02 mg/mL), similar to ascorbic acid (IC50 of 0.26 ± 0.24 mg/mL). Similarly, the TAC assay for HO oil revealed an IC50 of 1086.81 ± 0.32 µM AAE/mg. Additionally, the oils' effectiveness against four bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes, and five fungi, Geotrichum candidum, Aspergillus niger, Saccharomyces cerevisiae, Candida glabrata, and Candida albicans, was tested in vitro. The examined essential oils generally exhibited limited antimicrobial effects, with the exception of HC oil, which demonstrated an exceptionally impressive level of antifungal activity. In order to clarify the antioxidant, antibacterial, and antifungal effects of the identified plant compounds, we employed computational methods, specifically molecular docking. This technique involved studying the interactions between these compounds and established protein targets associated with antioxidant, antibacterial, and antifungal activities.

7.
Life (Basel) ; 13(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511960

RESUMEN

Breast cancer is a disease characterized by the uncontrolled proliferation of malignant cells in breast tissue, and oxidative stress activated by an accumulation of reactive oxygen species (ROS) is associated with its development and progression. Essential oils from medicinal plants, known for their antioxidant and therapeutic properties, are being explored as alternatives. Ptychotis verticillata, also known as Nûnkha, is a medicinal plant native to Morocco, belonging to the Apiaceae family, and used for generations in traditional medicine. This study focuses on the phytochemical characterization of P. verticillata essential oil (PVEO) from the province of Oujda, Morocco, for its therapeutic properties. The essential oil was obtained by hydro-distillation, and its volatile components were analyzed by gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of various aromatic and terpene compounds, with carvacrol being the most abundant compound. PVEO showed antioxidant properties in several tests, including ß-carotene bleaching, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and total antioxidant capacity (TAC). It also demonstrated cytotoxicity against MCF-7 and MDA-MB-231 breast cancer cell lines, with higher selectivity for MDA-MB-231. The results reveal that Ptychotis verticillata essential oil (PVEO) could be a promising natural alternative for the treatment of breast cancer.

8.
Mar Drugs ; 21(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37504903

RESUMEN

In this study, a comparison was made of the chemical makeup of different extracts obtained from Gracilaria bursa-pastoris, a type of red seaweed that was gathered from the Nador lagoon situated in the northern part of Morocco. Additionally, their anti-diabetic and antioxidant properties were investigated. The application of GC-MS technology to analyze the fatty acid content of the samples revealed that linoleic acid and eicosenoic acid were the most abundant unsaturated fatty acids across all samples, with palmitic acid and oleic acid following in frequency. The HPLC analysis indicated that ascorbic and kojic acids were the most prevalent phenolic compounds, while apigenin was the most common flavonoid molecule. The aqueous extract exhibited significant levels of polyphenols and flavonoids, registering values of 381.31 ± 0.33 mg GAE/g and 201.80 ± 0.21 mg QE/g, respectively. Furthermore, this particular extract demonstrated a remarkable ability to scavenge DPPH radicals, as evidenced by its IC50 value of 0.17 ± 0.67 mg/mL. In addition, the methanolic extract was found to possess antioxidant properties, as evidenced by its ability to prevent ß-carotene discoloration, with an IC50 ranging from 0.062 ± 0.02 mg/mL to 0.070 ± 0.06 mg/mL. In vitro study showed that all extracts significantly inhibited the enzymatic activity of α-amylase and α-glucosidase. Finally, molecular docking models were applied to assess the interaction between the primary phytochemicals identified in G. bursa-pastoris extracts and the human pancreatic α-amylase and α-glucosidase enzymes. The findings suggest that these extracts contain bioactive substances capable of reducing enzyme activity more effectively than the commercially available drug acarbose.


Asunto(s)
Antioxidantes , Gracilaria , Humanos , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , alfa-Glucosidasas , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Fitoquímicos/química
9.
Life (Basel) ; 13(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37374175

RESUMEN

The mastic tree, scientifically known as Pistacia lentiscus, which belongs to the Anacardiaceae family, was used in this study. The aim of this research was to analyze the chemical composition of this plant and assess its antioxidant and antibacterial properties using both laboratory experiments and computer simulations through molecular docking, a method that predicts the binding strength of a small molecule to a protein. The soxhlet method (SE) was employed to extract substances from the leaves of P. lentiscus found in the eastern region of Morocco. Hexane and methanol were the solvents used for the extraction process. The n-hexane extract was subjected to gas chromatography-mass spectrometry (GC/MS) to identify its fatty acid content. The methanolic extract underwent high-performance liquid chromatography with a diode-array detector (HPLC-DAD) to determine the presence of phenolic compounds. Antioxidant activity was assessed using the DPPH spectrophotometric test. The findings revealed that the main components in the n-hexane extract were linoleic acid (40.97 ± 0.33%), oleic acid (23.69 ± 0.12%), and palmitic acid (22.83 ± 0.10%). Catechin (37.05 ± 0.15%) was identified as the predominant compound in the methanolic extract through HPLC analysis. The methanolic extract exhibited significant DPPH radical scavenging, with an IC50 value of 0.26 ± 0.14 mg/mL. The antibacterial activity was tested against Staphylococcus aureus, Listeria innocua, and Escherichia coli, while the antifungal activity was evaluated against Geotrichum candidum and Rhodotorula glutinis. The P. lentiscus extract demonstrated notable antimicrobial effects. Additionally, apart from molecular docking, other important factors, such as drug similarity, drug metabolism and distribution within the body, potential adverse effects, and impact on bodily systems, were considered for the substances derived from P. lentiscus. Scientific algorithms, such as Prediction of Activity Spectra for Substances (PASS), Absorption, Distribution, Metabolism, Excretion (ADME), and Pro-Tox II, were utilized for this assessment. The results obtained from this research support the traditional medicinal usage of P. lentiscus and suggest its potential for drug development.

10.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37375787

RESUMEN

The botanical species Ceratonia siliqua L., commonly referred to as the Carob tree, and locally as "L'Kharrûb", holds significance as an agro-sylvo-pastoral species, and is traditionally utilized in Morocco for treating a variety of ailments. This current investigation aims to ascertain the antioxidant, antimicrobial, and cytotoxic properties of the ethanolic extract of C. siliqua leaves (CSEE). Initially, we analyzed the chemical composition of CSEE through high-performance liquid chromatography with Diode-Array Detection (HPLC-DAD). Subsequently, we conducted various assessments, including DPPH scavenging capacity, ß-carotene bleaching assay, ABTS scavenging, and total antioxidant capacity assays to evaluate the antioxidant activity of the extract. In this study, we investigated the antimicrobial properties of CSEE against five bacterial strains (two gram-positive, Staphylococcus aureus, and Enterococcus faecalis; and three gram-negative bacteria, Escherichia coli, Escherichia vekanda, and Pseudomonas aeruginosa) and two fungi (Candida albicans, and Geotrichum candidum). Additionally, we evaluated the cytotoxicity of CSEE on three human breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-436) and assessed the potential genotoxicity of the extract using the comet assay. Through HPLC-DAD analysis, we determined that phenolic acids and flavonoids were the primary constituents of the CSEE extract. The results of the DPPH test indicated a potent scavenging capacity of the extract with an IC50 of 302.78 ± 7.55 µg/mL, which was comparable to that of ascorbic acid with an IC50 of 260.24 ± 6.45 µg/mL. Similarly, the ß-carotene test demonstrated an IC50 of 352.06 ± 12.16 µg/mL, signifying the extract's potential to inhibit oxidative damage. The ABTS assay revealed IC50 values of 48.13 ± 3.66 TE µmol/mL, indicating a strong ability of CSEE to scavenge ABTS radicals, and the TAC assay demonstrated an IC50 value of 165 ± 7.66 µg AAE/mg. The results suggest that the CSEE extract had potent antioxidant activity. Regarding its antimicrobial activity, the CSEE extract was effective against all five tested bacterial strains, indicating its broad-spectrum antibacterial properties. However, it only showed moderate activity against the two tested fungal strains, suggesting it may not be as effective against fungi. The CSEE exhibited a noteworthy dose-dependent inhibitory activity against all the tested tumor cell lines in vitro. The extract did not induce DNA damage at the concentrations of 6.25, 12.5, 25, and 50 µg/mL, as assessed by the comet assay. However, the 100 µg/mL concentration of CSEE resulted in a significant genotoxic effect compared to the negative control. A computational analysis was conducted to determine the physicochemical and pharmacokinetic characteristics of the constituent molecules present in the extract. The Prediction of Activity Spectra of Substances (PASS) test was employed to forecast the potential biological activities of these molecules. Additionally, the toxicity of the molecules was evaluated using the Protox II webserver.

11.
Molecules ; 29(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202676

RESUMEN

Cannabis is considered (Cannabis sativa L.) a sacred herb in many countries and is vastly employed in traditional medicine to remedy numerous diseases, such as diabetes. This research investigates the chemical composition of the aqueous extracts from Cannabis sativa L. seeds. Furthermore, the impact of these extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase enzymes is evaluated, as well as their antihyperglycemic effect. Analysis of the chemical composition of the aqueous extract was conducted using high-performance liquid chromatography with a photodiode array detector (HPLC-DAD). In contrast, the ethanol, hexanic, dichloromethane, and aqueous extract compositions have been established. Additionally, the inhibitory effects of ethanolic, dichloromethane, and aqueous extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase activities were evaluated in vitro and in vivo. The results of HPLC analysis indicate that the most abundant phenolic compound in the aqueous cannabis seed extract is 3-hydroxycinnamic acid, followed by 4-hydroxybenzoic acid and rutin acid. Moreover, administration of ethanolic and aqueous extracts at a dose of 150 mg/Kg significantly suppressed postprandial hyperglycemia compared to the control group; the ethanolic, dichloromethane, and aqueous extracts significantly inhibit pancreatic α-amylase and lipase, and intestinal α-glucosidase in vitro. The pancreatic α-amylase test exhibited an inhibition with IC50 values of 16.36 ± 1.24 µg/mL, 19.33 ± 1.40 µg/mL, 23.53 ± 1.70 µg/mL, and 17.06 ± 9.91 µg/mL for EAq, EDm, EET, and EHx, respectively. EET has the highest inhibitory capacity for intestinal α-glucosidase activity, with an IC50 of 32.23 ± 3.26 µg/mL. The extracts inhibit porcine pancreatic lipase activity, demonstrating their potential as lipase inhibitors. Specifically, at a concentration of 1 mg/mL, the highest inhibition rate (77%) was observed for EDm. To confirm these results, the inhibitory effect of these extracts on enzymes was tested in vivo. The oral intake of aqueous extract markedly reduced starch- and sucrose-induced hyperglycemia in healthy rats. Administration of the ethanolic extract at a specific dose of 150 mg/kg significantly reduced postprandial glycemia compared with the control group. It is, therefore, undeniable that cannabis extracts represent a promising option as a potentially effective treatment for type 2 diabetes.


Asunto(s)
Cannabis , Diabetes Mellitus Tipo 2 , Alucinógenos , Hiperglucemia , Animales , Ratas , Porcinos , Hipoglucemiantes/farmacología , alfa-Amilasas Pancreáticas , alfa-Glucosidasas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cloruro de Metileno , Lipasa , Hiperglucemia/tratamiento farmacológico , Agonistas de Receptores de Cannabinoides , Etanol , Extractos Vegetales/farmacología
12.
Pharmaceutics ; 14(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35335858

RESUMEN

Artemisia absinthium L. is one of the plants which has been used in folk medicine for many diseases over many centuries. This study aims to analyze the chemical composition of the Artemisia absinthium ethyl acetate and its aqueous extracts and to evaluate their effect on the pancreatic α-amylase enzyme and the intestinal α-glucosidase enzyme. In this study, the total contents of phenolic compounds, flavonoids, and condensed tannins in ethyl acetate and the aqueous extracts of Artemisia absinthium leaves were determined by using spectrophotometric techniques, then the antioxidant capacity of these extracts was examined using three methods, namely, the DPPH (2, 2-diphenyl-1picrylhydrazyl) free radical scavenging method, the iron reduction method FRAP, and the ß-carotene bleaching method. The determination of the chemical composition of the extracts was carried out using high-performance liquid chromatography-the photodiode array detector (HPLC-DAD). These extracts were also evaluated for their ability to inhibit the activity of the pancreatic α-amylase enzyme, as well as the intestinal α-glucosidase enzyme, in vitro and in vivo, thus causing the reduction of blood glucose. The results of this study showed that high polyphenol and flavonoid contents were obtained in ethyl acetate extract with values of 60.34 ± 0.43 mg GAE/g and 25.842 ± 0.241 mg QE/g, respectively, compared to the aqueous extract. The results indicated that the aqueous extract had a higher condensed tannin content (3.070 ± 0.022 mg EC/g) than the ethyl acetate extract (0.987 ± 0.078 mg EC/g). Ethyl acetate extract showed good DPPH radical scavenging and iron reduction FRAP activity, with an IC50 of 0.167 ± 0.004 mg/mL and 0.923 ± 0.0283 mg/mL, respectively. The ß-carotene test indicated that the aqueous and ethyl acetate extracts were able to delay the decoloration of ß-carotene with an inhibition of 48.7% and 48.3%, respectively, which may mean that the extracts have antioxidant activity. HPLC analysis revealed the presence of naringenin and caffeic acid as major products in AQE and EAE, respectively. Indeed, this study showed that the aqueous and ethyl acetate extracts significantly inhibited the pancreatic α-amylase and intestinal α-glucosidase, in vitro. To confirm this result, the inhibitory effect of these plant extracts on the enzymes has been evaluated in vivo. Oral intake of the aqueous extract significantly attenuated starch- and sucrose-induced hyperglycemia in normal rats, and evidently, in STZ-diabetic rats as well. The ethyl acetate extract had no inhibitory activity against the intestinal α-glucosidase enzyme in vivo. The antioxidant and the enzyme inhibitory effects may be related to the presence of naringenin and caffeic acid or their synergistic effect with the other compounds in the extracts.

13.
Environ Sci Pollut Res Int ; 29(1): 158-166, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34648165

RESUMEN

The present study focuses on the effect of temperature and extraction methods on the yields, chemical quality, fatty acids, and tocopherols of the oil extracted from the seeds of Opuntia ficus-indica, collected in the eastern region of Morocco. Our results revealed the effect of temperature that when we increase the temperature used, the yields also increase; the results also showed that this high temperature does not affect the physicochemical properties, fatty acids, and tocopherols. Thus, the results of this study revealed that the prickly pear is a rich source of oil; the obtained oil yields varied from 12.49%±0.09 for mechanical extraction, 11.46±0.10 for chemical extraction, and 10.52%±0.09 for maceration. The main fatty acids founded in Opuntia ficus-indica are linoleic acid 75.80%±0.10 (chemical), 74.07%±0.14 (maceration), and 71.59%±0.14 (mechanical) and palmitic acid 17.32%±0.02 (chemical), 22.419%±0.06 (maceration), and 26.58%±0.00 (mechanical); prickly pear oil could be classified as a linoleic acid. The physicochemical properties of Opuntia ficus-indica seed oils such as acid index mgKOH/g oil (4,376±0.10, 5.854±0.03, 5.667±0.07), saponification value mgKOH/g oil (181.12 ±0.18, 183.77±1.23, 179.08±3.45), and peroxide value 20milieq/Kg (5.75±0.08, 6±0.06, 5.97±0.04) for mechanical, chemical, and maceration extraction, respectively, density, and refractive index were all found to be in good accordance with quality criteria for both pure and fresh oils. Among the tocopherols found, a high value of γ-tocopherol was detected in mechanical extraction with 502.04±0.76 mg/kg, followed by chemical extraction and maceration with 430.12±0.61mg/kg and 315.47±0.96 mg/kg, respectively.


Asunto(s)
Opuntia , Ácidos Grasos , Marruecos , Aceites de Plantas , Temperatura , Tocoferoles
14.
ScientificWorldJournal ; 2020: 5717052, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082717

RESUMEN

Opuntia dillenii (Ker-Gawl.) Haw. is a medicinal plant that is widely used by the Moroccan population to treat many diseases, thanks to its richness in bioactive molecules. This study aims to evaluate the total phenolic content and antioxidant, antihyperlipidemic, and antidiabetogenic activities of O. dillenii seeds oil (ODSO), in vivo. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and the Folin-Ciocalteu method were applied in this study to determine antioxidant activity and total phenolic content of ODSO, respectively. The antihyperlipidemic effect of the ODSO (2 ml/kg) was evaluated in the high-fat diet-fed albino mice, relying on lipid profile, blood glucose, and growth performance variations. Moreover, the preventive effect of ODSO was evaluated against alloxan monohydrate-induced diabetes in albino mice. ODSO had the highest total phenolic content (518.18 ± 14.36 mg EAC/kg) and DPPH scavenging activity (IC50 = 0.38 ± 0.08 mg/mL). Furthermore, ODSO showed a significant antidiabetogenic effect by reducing bodyweight loss, blood sugar level rise, and mortality rate caused by alloxan in albino mice. Then, ODSO has exhibited a significant antihyperlipidemic effect by improving the lipid profile disorder and glucose level rise in the blood, produced by the high-fat diet-fed albino mice. Results suggest that antidiabetogenic and antihyperlipidemic activities of ODSO correlate to the phenolic content and antioxidant activity of this oil. Hence, this plant could be a significant source of medically important critical compounds.


Asunto(s)
Antioxidantes/uso terapéutico , Hipoglucemiantes/uso terapéutico , Hipolipemiantes/uso terapéutico , Opuntia , Fenoles/uso terapéutico , Aceites de Plantas/uso terapéutico , Aloxano , Animales , Antioxidantes/aislamiento & purificación , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Relación Dosis-Respuesta a Droga , Hipoglucemiantes/aislamiento & purificación , Hipolipemiantes/aislamiento & purificación , Ratones , Fenoles/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación , Semillas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...