Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36830527

RESUMEN

Supplementing ruminant diets with microalgae, may prove an effective nutritional strategy to manipulate rumen microbiota. Forty-eight ewes were divided into four homogenous groups (n = 12) according to their fat-corrected milk yield (6%), body weight, age, and days in milk, and were fed individually with concentrate, alfalfa hay, and wheat straw. The concentrate of the control group (CON) had no Spirulina supplementation, while in the treated groups 5 (SP5), 10 (SP10), and 15 g (SP15) of Spirulina were supplemented as an additive in the concentrate. An initial screening using metagenomic next-generation sequencing technology was followed by RT-qPCR analysis for the targeting of specific microbes, which unveiled the main alterations of the rumen microbiota under the Spirulina supplementation levels. The relative abundance of Eubacterium ruminantium and Fibrobacter succinogenes in rumen fluid, as well as Ruminococcus albus in rumen solid fraction, were significantly increased in the SP15 group. Furthermore, the relative abundance of Prevotella brevis was significantly increased in the rumen fluid of the SP5 and SP10 groups. In contrast, the relative abundance of Ruminobacter amylophilus was significantly decreased in the rumen fluid of the SP10 compared to the CON group, while in the solid fraction it was significantly decreased in the SP groups. Moreover, the relative abundance of Selenomonas ruminantium was significantly decreased in the SP5 and SP15 groups, while the relative abundance of Streptococcus bovis was significantly decreased in the SP groups. Consequently, supplementing 15 g Spirulina/ewe/day increased the relative abundance of key cellulolytic species in the rumen, while amylolytic species were reduced only in the solid fraction.

2.
Animals (Basel) ; 13(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36766266

RESUMEN

Supplementing ruminant diets with unconventional feedstuffs (Camelina sativa seeds; CS) rich in bioactive molecules such as polyunsaturated fatty acids, may prove a potential eco-efficient strategy to manipulate rumen microbiome towards efficiency. Forty-eight ewes were divided into four homogenous groups (n = 12) according to their fat-corrected milk yield (6%), body weight, and age, and were fed individually with concentrate, alfalfa hay, and wheat straw. The concentrate of the control group (CON) had no CS inclusion, whereas the treated groups were supplemented with CS at 60 (CS6), 110 (CS11), and 160 (CS16) g·kg-1 of concentrate, respectively. Rumen digesta was collected using an esophageal tube and then liquid and solid particles were separated using cheesecloth layers. An initial bacteriome screening using next-generation sequencing of 16S was followed by specific microbes targeting with a RT-qPCR platform, which unveiled the basic changes of the rumen microbiota under CS supplementation levels. The relative abundances of Archaea and methanogens were significantly reduced in the solid particles of CS11 and CS16. Furthermore, the relative abundance of Protozoa was significantly increased in both rumen fluid and solid particles of the CS6, whereas that of Fungi was significantly reduced in the rumen particle of the CS16. In rumen fluid, the relative abundance of Fibrobacter succinogens and Ruminobacter amylophilus were significantly increased in the CS6 and CS11, respectively. In the solid particles of the CS11, the relative abundance of Ruminococcus flavefaciens was significantly reduced, whereas those of Butyrivibrio proteoclasticus and Ruminobacter amylophilus were significantly increased. Additionally, the relative abundance of Selenomonas ruminantium was significantly increased in both CS11 and CS16. Consequently, the highest CS content in the concentrate reduced the relative abundance of methanogens without inducing radical changes in rumen microorganisms that could impair ruminal fermentation and ewes' performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...