Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 114(1): 98-112, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29320700

RESUMEN

Moesin, a protein of the ezrin, radixin, and moesin family, which links the plasma membrane to the cytoskeleton, is involved in multiple physiological and pathological processes, including viral budding and infection. Its interaction with the plasma membrane occurs via a key phosphoinositide, the phosphatidyl(4,5)inositol-bisphosphate (PIP2), and phosphorylation of residue T558, which has been shown to contribute, in cellulo, to a conformationally open protein. We study the impact of a double phosphomimetic mutation of moesin (T235D, T558D), which mimics the phosphorylation state of the protein, on protein/PIP2/microtubule interactions. Analytical ultracentrifugation in the micromolar range showed moesin in the monomer and dimer forms, with wild-type (WT) moesin containing a slightly larger fraction (∼30%) of dimers than DD moesin (10-20%). Only DD moesin was responsive to PIP2 in its micellar form. Quantitative cosedimentation assays using large unilamellar vesicles and quartz crystal microbalance on supported lipid bilayers containing PIP2 reveal a specific cooperative interaction for DD moesin with an ability to bind two PIP2 molecules simultaneously, whereas WT moesin was able to bind only one. In addition, DD moesin could subsequently interact with microtubules, whereas WT moesin was unable to do so. Altogether, our results point to an important role of these two phosphorylation sites in the opening of moesin: since DD moesin is intrinsically in a more open conformation than WT moesin, this intermolecular interaction is reinforced by its binding to PIP2. We also highlight important differences between moesin and ezrin, which appear to be finely regulated and to exhibit distinct molecular behaviors.


Asunto(s)
Membranas Artificiales , Proteínas de Microfilamentos/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Proteínas de Microfilamentos/química , Microtúbulos/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína
2.
PLoS One ; 9(1): e83874, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475027

RESUMEN

HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy imaging and statistical analysis. This strategy allowed us to identify whether the presence of viral RNA acts as a modulator for VLPs and cores size heterogeneity in a large population of particles. These results are analyzed in the light of a recently proposed statistical physics model for the self-assembly process. In particular, our results reveal that the modulation of size distribution by the presence of viral RNA is qualitatively reproduced, suggesting therefore an entropic origin for the modulation of RNA uptake by the nascent VLP.


Asunto(s)
VIH-1/fisiología , ARN Viral , Virión , VIH-1/ultraestructura , Humanos , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Termodinámica , Ensamble de Virus
3.
J Mol Biol ; 426(7): 1524-38, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24384094

RESUMEN

Clustered DNA damage sites are caused by ionizing radiation. They are much more difficult to repair than are isolated single lesions, and their biological outcomes in terms of mutagenesis and repair inhibition are strongly dependent on the type, relative position and orientation of the lesions present in the cluster. To determine whether these effects on repair mechanism could be due to local structural properties within DNA, we used (1)H NMR spectroscopy and restrained molecular dynamics simulation to elucidate the structures of three DNA duplexes containing bistranded clusters of lesions. Each DNA sequence contained an abasic site in the middle of one strand and differed by the relative position of the 8-oxoguanine, staggered on either the 3' or the 5' side of the complementary strand. Their repair by base excision repair protein Fpg was either complete or inhibited. All the studied damaged DNA duplexes adopt an overall B-form conformation and the damaged residues remain intrahelical. No striking deformations of the DNA chain have been observed as a result of close proximity of the lesions. These results rule out the possibility that differential recognition of clustered DNA lesions by the Fpg protein could be due to changes in the DNA's structural features induced by those lesions and provide new insight into the Fpg recognition process.


Asunto(s)
ADN/química , Guanina/análogos & derivados , Guanina/química , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico
4.
Appl Microbiol Biotechnol ; 93(5): 2125-34, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21863313

RESUMEN

Based on the observation that shocks provoked by heat or amphiphilic compounds present some similarities, this work aims at studying whether cells grown on oleate (amphiphilic pre-stress) acquire a tolerance to heat shock. In rich media, changing glucose for oleate significantly enhanced the cell resistance to the shock, however, cells grown on a minimal oleate medium lost their ability to grow on agar with the same kinetic than glucose-grown cells (more than 7-log decrease in 18 min compared with 3-log for oleate-grown cells). Despite this difference in kinetics, the sequence of events was similar for oleate-grown cells maintained at 50°C with a (1) loss of ability to form colonies at 27°C, (2) loss of membrane integrity and (3) lysis (observed only for some minimal-oleate-grown cells). Glucose-grown cells underwent different changes. Their membranes, which were less fluid, lost their integrity as well and cells were rapidly inactivated. But, surprisingly, their nuclear DNA was not stained by propidium iodide and other cationic fluorescent DNA-specific probes but became stainable by hydrophobic ones. Moreover, they underwent a dramatic increase in membrane viscosity. The evolution of lipid bodies during the heat shock depended also on the growth medium. In glucose-grown cells, they seemed to coalesce with the nuclear membrane whereas for oleate-grown cells, they coalesced together forming big droplets which could be released in the medium. In some rare cases of oleate-grown cells, lipid bodies were fragmented and occupied all the cell volume. These results show that heat triggers programmed cell death with uncommon hallmarks for glucose-grown cells and necrosis for methyl-oleate-grown cells.


Asunto(s)
Glucosa/metabolismo , Viabilidad Microbiana/efectos de la radiación , Ácido Oléico/metabolismo , Yarrowia/metabolismo , Yarrowia/efectos de la radiación , Membrana Celular/fisiología , Membrana Celular/efectos de la radiación , Medios de Cultivo/química , Calor , Estrés Fisiológico , Yarrowia/crecimiento & desarrollo , Yarrowia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...