Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(12): e0260610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34874978

RESUMEN

This article proposes a study of the SARS-CoV-2 virus spread and the efficacy of public policies in Brazil. Using both aggregated (from large Internet companies) and fine-grained (from Departments of Motor Vehicles) mobility data sources, our work sheds light on the effect of mobility on the pandemic situation in the Brazilian territory. Our main contribution is to show how mobility data, particularly fine-grained ones, can offer valuable insights into virus propagation. For this, we propose a modification in the SENUR model to add mobility information, evaluating different data availability scenarios (different information granularities), and finally, we carry out simulations to evaluate possible public policies. In particular, we conduct a case study that shows, through simulations of hypothetical scenarios, that the contagion curve in several Brazilian cities could have been milder if the government had imposed mobility restrictions soon after reporting the first case. Our results also show that if the government had not taken any action and the only safety measure taken was the population's voluntary isolation (out of fear), the time until the contagion peak for the first wave would have been postponed, but its value would more than double.


Asunto(s)
COVID-19/transmisión , Movimiento , Brasil/epidemiología , COVID-19/epidemiología , COVID-19/patología , COVID-19/virología , Bases de Datos Factuales , Humanos , Modelos Teóricos , Pandemias , Política Pública , Cuarentena , SARS-CoV-2/aislamiento & purificación
2.
Sensors (Basel) ; 15(3): 6607-32, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25808766

RESUMEN

We are entering a new era of computing technology, the era of Internet of Things (IoT). An important element for this popularization is the large use of off-the-shelf sensors. Most of those sensors will be deployed by different owners, generally common users, creating what we call the Collaborative IoT. This collaborative IoT helps to increase considerably the amount and availability of collected data for different purposes, creating new interesting opportunities, but also several challenges. For example, it is very challenging to search for and select a desired sensor or a group of sensors when there is no description about the provided sensed data or when it is imprecise. Given that, in this work we characterize the properties of the sensed data in the Internet of Things, mainly the sensed data contributed by several sources, including sensors from common users. We conclude that, in order to safely use data available in the IoT, we need a filtering process to increase the data reliability. In this direction, we propose a new simple and powerful approach that helps to select reliable sensors. We tested our method for different types of sensed data, and the results reveal the effectiveness in the correct selection of sensor data.

3.
Sensors (Basel) ; 13(2): 1942-64, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23385410

RESUMEN

The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.

4.
Sensors (Basel) ; 10(3): 2150-68, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22294920

RESUMEN

Wireless Sensor Networks are presented as devices for signal sampling and reconstruction. Within this framework, the qualitative and quantitative influence of (i) signal granularity, (ii) spatial distribution of sensors, (iii) sensors clustering, and (iv) signal reconstruction procedure are assessed. This is done by defining an error metric and performing a Monte Carlo experiment. It is shown that all these factors have significant impact on the quality of the reconstructed signal. The extent of such impact is quantitatively assessed.


Asunto(s)
Redes de Comunicación de Computadores , Modelos Estadísticos , Tecnología de Sensores Remotos , Simulación por Computador , Diseño de Equipo , Método de Montecarlo
5.
Sensors (Basel) ; 9(9): 7287-307, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22423207

RESUMEN

Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...