Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
Virus Res ; 340: 199291, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065303

RESUMEN

Here, the antiviral activity of aminoadamantane derivatives were evaluated against SARS-CoV-2. The compounds exhibited low cytotoxicity to Vero, HEK293 and CALU-3 cells up to a concentration of 1,000 µM. The inhibitory concentration (IC50) of aminoadamantane was 39.71 µM in Vero CCL-81 cells and the derivatives showed significantly lower IC50 values, especially for compounds 3F4 (0.32 µM), 3F5 (0.44 µM) and 3E10 (1.28 µM). Additionally, derivatives 3F5 and 3E10 statistically reduced the fluorescence intensity of SARS-CoV-2 protein S from Vero cells at 10 µM. Transmission microscopy confirmed the antiviral activity of the compounds, which reduced cytopathic effects induced by the virus, such as vacuolization, cytoplasmic projections, and the presence of myelin figures derived from cellular activation in the face of infection. Additionally, it was possible to observe a reduction of viral particles adhered to the cell membrane and inside several viral factories, especially after treatment with 3F4. Moreover, although docking analysis showed favorable interactions in the catalytic site of Cathepsin L, the enzymatic activity of this enzyme was not inhibited significantly in vitro. The new derivatives displayed lower predicted toxicities than aminoadamantane, which was observed for either rat or mouse models. Lastly, in vivo antiviral assays of aminoadamantane derivatives in BALB/cJ mice after challenge with the mouse-adapted strain of SARS-CoV-2, corroborated the robust antiviral activity of 3F4 derivative, which was higher than aminoadamantane and its other derivatives. Therefore, aminoadamantane derivatives show potential broad-spectrum antiviral activity, which may contribute to COVID-19 treatment in the face of emerging and re-emerging SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Humanos , Animales , Ratones , Ratas , Tratamiento Farmacológico de COVID-19 , Células HEK293 , Células Vero , Amantadina , Antivirales/farmacología , Antivirales/uso terapéutico
2.
Exp Biol Med (Maywood) ; 248(19): 1684-1693, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38031237

RESUMEN

The replicative success of vaccinia virus (VACV) depends on its ability to subvert host functions. Poxviruses multiplication and maturation are closely associated with the endoplasmic reticulum (ER) and its membranes. This organelle responds to disturbances caused by the accumulation of misfolded proteins, leading to processing of these proteins or even programmed cell death through the unfolded protein response (UPR). Several studies show that different viruses can activate UPR pathway components and negatively modulate others. Here, we investigate the effects of infections by zoonotic VACV strains from Brazil, Guarani P1 virus (GP1V) and Passatempo virus (PSTV), in the activation of UPR pathway sensors. We observed translocation of ATF6 to the nucleus as well as transcriptional increase after GP1V, PSTV, and reference strain Western Reserve (WR) infection. XBP1 processing appears to be negatively modulated after VACV infection; however, inhibition of the inositol-requiring enzyme 1 (IRE1) kinase domain led to a reduction in plaque sizes for these viruses. The absence of PKR-like endoplasmic reticulum kinase (PERK) has an impact on the plaque phenotype of GP1V, PSTV viruses, as well as for the prototypical strain WR. These results indicate that the VACV manipulates the three arms of the UPR path differently to ensure replicative success.


Asunto(s)
Respuesta de Proteína Desplegada , Virus Vaccinia , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Replicación del ADN
3.
Microorganisms ; 11(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37894080

RESUMEN

SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs. Here, we describe the development and validation of an Ag-RDT during an outbreak of the Omicron variant, including the characterization of a new monoclonal antibody (anti-DTC-N 1B3 mAb) that recognizes the Nucleocapsid protein (N). The anti-DTC-N 1B3 mAb recognized the sequence TFPPTEPKKDKKK located at the C-terminus of the N protein of main SARS-CoV-2 variants of concern. Accordingly, the Ag-RDT prototypes using the anti-DTC-N 1B3 mAB detected all the SARS-CoV-2 variants-Wuhan, Alpha, Gamma, Delta, P2 and Omicron. The performance of the best prototype (sensitivity of 95.2% for samples with Ct ≤ 25; specificity of 98.3% and overall accuracy of 85.0%) met the WHO recommendations. Moreover, results from a patients' follow-up study indicated that, if performed within the first three days after onset of symptoms, the Ag-RDT displayed 100% sensitivity. Thus, the new mAb and the Ag-RDT developed herein may constitute alternative tools for COVID-19 point-of-care diagnosis and epidemiological surveillance.

4.
Einstein (Sao Paulo) ; 21: eAE0115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37436266

RESUMEN

This study proposes a strategy for large-scale testing among a large number of people for the early diagnosis of COVID-19 to elucidate the epidemiological situation. Pool testing involves the analysis of pooled samples. This study aimed to discuss a reverse transcription technique followed by quantitative real-time polymerase chain reaction using pool testing to detect SARS-CoV-2 in nasopharyngeal swab samples. The study proposes an innovative diagnostic strategy that contributes to resource optimization, cost reduction, and improved agility of feedback from results. Pool testing is simultaneously performed on multiple samples to efficiently and cost-effectively detect COVID-19. Pool testing can optimize resource utilization and expand diagnostic access, and is a viable alternative for developing countries with limited access to testing. To optimize resources, the pool size was determined by estimating COVID-19 prevalence in the study population.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad
5.
Virol J ; 20(1): 145, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434252

RESUMEN

BACKGROUND: Cell responses to different stress inducers are efficient mechanisms that prevent and fight the accumulation of harmful macromolecules in the cells and also reinforce the defenses of the host against pathogens. Vaccinia virus (VACV) is an enveloped, DNA virus, belonging to the Poxviridae family. Members of this family have evolved numerous strategies to manipulate host responses to stress controlling cell survival and enhancing their replicative success. In this study, we investigated the activation of the response signaling to malformed proteins (UPR) by the VACV virulent strain-Western Reserve (WR)-or the non-virulent strain-Modified Vaccinia Ankara (MVA). METHODS: Through RT-PCR RFLP and qPCR assays, we detected negative regulation of XBP1 mRNA processing in VACV-infected cells. On the other hand, through assays of reporter genes for the ATF6 component, we observed its translocation to the nucleus of infected cells and a robust increase in its transcriptional activity, which seems to be important for virus replication. WR strain single-cycle viral multiplication curves in ATF6α-knockout MEFs showed reduced viral yield. RESULTS: We observed that VACV WR and MVA strains modulate the UPR pathway, triggering the expression of endoplasmic reticulum chaperones through ATF6α signaling while preventing IRE1α-XBP1 activation. CONCLUSIONS: The ATF6α sensor is robustly activated during infection while the IRE1α-XBP1 branch is down-regulated.


Asunto(s)
Factores de Transcripción , Virus Vaccinia , Factores de Transcripción/genética , Virus Vaccinia/genética , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada
6.
Einstein (Säo Paulo) ; 21: eAE0115, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1448183

RESUMEN

ABSTRACT This study proposes a strategy for large-scale testing among a large number of people for the early diagnosis of COVID-19 to elucidate the epidemiological situation. Pool testing involves the analysis of pooled samples. This study aimed to discuss a reverse transcription technique followed by quantitative real-time polymerase chain reaction using pool testing to detect SARS-CoV-2 in nasopharyngeal swab samples. The study proposes an innovative diagnostic strategy that contributes to resource optimization, cost reduction, and improved agility of feedback from results.

7.
Viruses ; 14(12)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36560750

RESUMEN

Since its first identification in Brazil, the variant of concern (VOC) Gamma has been associated with increased infection and transmission rates, hospitalizations, and deaths. Minas Gerais (MG), the second-largest populated Brazilian state with more than 20 million inhabitants, observed a peak of cases and deaths in March-April 2021. We conducted a surveillance study in 1240 COVID-19-positive samples from 305 municipalities distributed across MG's 28 Regional Health Units (RHU) between 1 March to 27 April 2021. The most common variant was the VOC Gamma (71.2%), followed by the variant of interest (VOI) zeta (12.4%) and VOC alpha (9.6%). Although the predominance of Gamma was found in most of the RHUs, clusters of Zeta and Alpha variants were observed. One Alpha-clustered RHU has a history of high human mobility from countries with Alpha predominance. Other less frequent lineages, such as P.4, P.5, and P.7, were also identified. With our genomic characterization approach, we estimated the introduction of Gamma on 7 January 2021, at RHU Belo Horizonte. Differences in mortality between the Zeta, Gamma and Alpha variants were not observed. We reinforce the importance of vaccination programs to prevent severe cases and deaths during transmission peaks.


Asunto(s)
COVID-19 , Humanos , Brasil/epidemiología , Estudios Retrospectivos , COVID-19/epidemiología , SARS-CoV-2 , Genómica
8.
Epidemiol Serv Saude ; 31(1): e2021409, 2022.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-35475998

RESUMEN

OBJECTIVE: To show the feasibility of the combined use of self-collected nasopharyngeal swab and pool testing to detect SARS-CoV-2 in epidemiological surveys. METHODS: This experience included a sample of 154 students at the Universidade Federal de Minas Gerais, who performed self-collected nasopharyngeal swab in individual cabins and without supervision. The molecular test was performed using the pool testing technique. RESULTS: It took each person 5 minutes to collect the sample. An analysis was performed to detect endogenous RNA in 40 samples. The results showed that there were no failures resulting from self-collection. None of the pools detected the presence of viral RNA. The cost of molecular testing (RT-PCR), by pool testing, with samples obtained by self-collection was about ten times lower than the usual methods. CONCLUSION: The strategies that were investigated proved to be economically feasible and valid for the research on SARS-CoV-2 in epidemiological surveys.


Asunto(s)
COVID-19 , Estudiantes de Medicina , Brasil/epidemiología , COVID-19/diagnóstico , Estudios de Factibilidad , Humanos , Nasofaringe , SARS-CoV-2
9.
Preprint en Portugués | SciELO Preprints | ID: pps-3430

RESUMEN

Objective: To show the feasibility of using combined nasopharyngeal swab auto-collection and pool testing to detect SARS-CoV-2 in epidemiological surveys. Methods: The study involved a sample of 154 students from the Universidade Federal de Minas Gerais, who performed the self-collection of the nasopharyngeal swab in individual booths without supervision. Molecular testing was performed using the pool testing technique. Results: Obtaining samples lasted about 5 minutes each. Analysis 6 was performed to detect endogenous RNA in 40 samples, and the results indicated that no failures resulted from self-collection. None of the pools detected the presence of viral RNA. The cost of performing the molecular test (RT-PCR) by pool testing with samples obtained by self-collection was about 10 times lower than with the usual methods. Conclusion: The investigated strategies showed to be economically feasible and valid for the research of SARS-CoV-2 in epidemiological surveys.


Objetivo: Demostrar la viabilidad de utilizar el uso combinado de la autocollección de swabs nasofaríngeos y pool testing para la detección del SARS-CoV2 en encuestas epidemiológicas. Métodos: El estudio involucró a una muestra de 154 estudiantes de la Universidade Federal de Minas Gerais, quienes realizaron la autocolección del hisopo nasofaríngeo en cabinas individuales sin supervision. La prueba molecular se realizó utilizando la técnica de prueba de grupo. Resultados: La obtención de muestras duró unos 5 minutos por persona. Se realizó un análisis para detectar RNA endógeno en 40 muestras y los resultados indicaron que no hubo fallas derivadas de la autocolección. Ninguno de los grupos detectó la presencia de RNA viral. El costo de realizar una prueba molecular (RT-PCR) por pool con muestras obtenidas por auto-recolección fue aproximadamente 10 veces menor que con los métodos habituales. Conclusión: Las estrategias investigadas demonstraram ser económicamente viables y válidas para la investigación del SARS-CoV-2 en encuestas epidemiológicas.


Objetivo: Demonstrar a viabilidade da utilização combinada da autocoleta de swab nasofaríngeo e pool testing para detecção do SARS-CoV-2 em inquéritos epidemiológicos. Métodos: O estudo envolveu amostra de 154 estudantes da Universidade Federal de Minas Gerais, que realizaram a autocoleta do swab nasofaríngeo em cabines individuais e sem supervisão. O teste molecular foi realizado utilizando-se a técnica de pool testing. Resultados: A obtenção de amostras durou cerca de 5 minutos por pessoa. Realizou-se análise para detecção de RNA endógeno em 40 amostras e os resultados indicaram que não houve falhas decorrentes da autocoleta. Nenhum dos pools detectou presença de RNA viral. O custo da realização do teste molecular (RT-PCR) por pool testing com amostras obtidas por autocoleta foi cerca de dez vezes menor do que nos métodos habituais. Conclusão: As estratégias investigadas mostraram-se economicamente viáveis e válidas para a pesquisa de SARS-CoV-2 em inquéritos epidemiológicos.

10.
Epidemiol. serv. saúde ; 31(1): e2021409, 2022. tab, graf
Artículo en Inglés, Portugués | LILACS | ID: biblio-1375391

RESUMEN

Objetivo: Demonstrar a viabilidade da utilização combinada da autocoleta de swab nasofaríngeo e pool testing para detecção do SARS-CoV-2 em inquéritos epidemiológicos. Métodos: A experiência envolveu amostra de 154 estudantes da Universidade Federal de Minas Gerais, que realizaram a autocoleta do swab nasofaríngeo em cabines individuais e sem supervisão. O teste molecular foi realizado utilizando-se a técnica de pool testing. Resultados: A obtenção de amostras durou cerca de 5 minutos por pessoa. Realizou-se análise para detecção de RNA endógeno em 40 amostras e os resultados indicaram que não houve falhas decorrentes da autocoleta. Nenhum dos pools detectou presença de RNA viral. O custo da realização do teste molecular (RT-PCR) por pool testing com amostras obtidas por autocoleta foi cerca de dez vezes menor do que nos métodos habituais. Conclusão: As estratégias investigadas mostraram-se economicamente viáveis e válidas para a pesquisa de SARS-CoV-2 em inquéritos epidemiológicos.


Objetivo: Demostrar la viabilidad del uso combinado de la auto recolección de swabs nasofaríngeos y tests por agrupamiento (pool testing) para la detección del SARS-CoV-2 en encuestas epidemiológicas. Métodos: La prueba involucró a una muestra de 154 estudiantes de la Universidade Federal de Minas Gerais, quienes realizaron e autorecolectado del hisopo nasofaríngeo en cabinas individuales sin supervisión. La prueba molecular se realizó utilizando la técnica de prueba de grupo. Resultados: La obtención de muestras duró unos 5 minutos por persona. Se realizó un análisis para detectar ARN endógeno en 40 muestras y los resultados indicaron que no hubo fallas derivadas de la autorecolección. Ninguno de los grupos detectó la presencia de ARN viral. El costo de realizar una prueba molecular (RT-PCR) por pool con muestras obtenidas por auto-recolección fue aproximadamente 10 veces menor que con los métodos habituales. Conclusión: Las estrategias investigadas demostraron ser económicamente viables y válidas para la investigación del SARS-CoV-2 en encuestas epidemiológicas.


Objective: To show the feasibility of the combined use of self-collected nasopharyngeal swab and pool testing to detect SARS-CoV-2 in epidemiological surveys. Methods: This experience included a sample of 154 students at the Universidade Federal de Minas Gerais, who performed self-collected nasopharyngeal swab in individual cabins and without supervision. The molecular test was performed using the pool testing technique. Results: It took each person 5 minutes to collect the sample. An analysis was performed to detect endogenous RNA in 40 samples. The results showed that there were no failures resulting from self-collection. None of the pools detected the presence of viral RNA. The cost of molecular testing (RT-PCR), by pool testing, with samples obtained by self-collection was about ten times lower than the usual methods. Conclusion: The strategies that were investigated proved to be economically feasible and valid for the research on SARS-CoV-2 in epidemiological surveys.


Asunto(s)
Humanos , Estudios de Factibilidad , Autoevaluación , COVID-19/diagnóstico , Estudiantes de Medicina/estadística & datos numéricos , Brasil/epidemiología , Nasofaringe/virología , SARS-CoV-2/patogenicidad
11.
Genomics ; 113(6): 4109-4115, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34718131

RESUMEN

Genetic variants of SARS-CoV-2 have been emerging and circulating in many places across the world. Rapid detection of these variants is essential since their dissemination can impact transmission rates, diagnostic procedures, disease severity, response to vaccines or patient management. Sanger sequencing has been used as the preferred approach for variant detection among circulating human immunodeficiency and measles virus genotypes. Using primers to amplify a fragment of the SARS-CoV-2 genome encoding part of the Spike protein, we showed that Sanger sequencing allowed us to rapidly detect the introduction and spread of three distinct SARS-CoV-2 variants in two major Brazilian cities. In both cities, after the predominance of variants closely related to the virus first identified in China, the emergence of the P.2 variant was quickly followed by the detection of the P1 variant, which became dominant in less than one month after it was first detected.


Asunto(s)
COVID-19/virología , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , SARS-CoV-2/genética , Brasil/epidemiología , COVID-19/epidemiología , China , Ciudades , Humanos , Mutación , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética
12.
Viruses ; 13(9)2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34578387

RESUMEN

Brazil was considered one of the emerging epicenters of the coronavirus pandemic in 2021, experiencing over 3000 daily deaths caused by the virus at the peak of the second wave. In total, the country had more than 20.8 million confirmed cases of COVID-19, including over 582,764 fatalities. A set of emerging variants arose in the country, some of them posing new challenges for COVID-19 control. The goal of this study was to describe mutational events across samples from Brazilian SARS-CoV-2 sequences publicly obtainable on Global Initiative on Sharing Avian Influenza Data-EpiCoV (GISAID-EpiCoV) platform and to generate indexes of new mutations by each genome. A total of 16,953 SARS-CoV-2 genomes were obtained, which were not proportionally representative of the five Brazilian geographical regions. A comparative sequence analysis was conducted to identify common mutations located at 42 positions of the genome (38 were in coding regions, whereas two were in 5' and two in 3' UTR). Moreover, 11 were synonymous variants, 27 were missense variants, and more than 44.4% were located in the spike gene. Across the total of single nucleotide variations (SNVs) identified, 32 were found in genomes obtained from all five Brazilian regions. While a high genomic diversity has been reported in Europe given the large number of sequenced genomes, Africa has demonstrated high potential for new variants. In South America, Brazil, and Chile, rates have been similar to those found in South Africa and India, providing enough "space" for new mutations to arise. Genomic surveillance is the central key to identifying the emerging variants of SARS-CoV-2 in Brazil and has shown that the country is one of the "hotspots" in the generation of new variants.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Mutación , SARS-CoV-2/genética , Brasil/epidemiología , COVID-19/historia , Evolución Molecular , Genotipo , Historia del Siglo XXI , Humanos , Modelos Teóricos , Tasa de Mutación , Filogenia , Filogeografía , Vigilancia en Salud Pública
13.
Virol J ; 18(1): 124, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107993

RESUMEN

BACKGROUND: The vaccinia virus (VACV) isolates, Guarani P1 virus (GP1V) and Passatempo virus (PSTV), were isolated during zoonotic outbreaks in Brazil. Each one of them belongs to two different VACV clades, defined by biological aspects that include virulence in mice and phylogenetic analysis. Considering that information about how vaccinia viruses from different groups elicit immune responses in animals is scarce, we investigated such responses in mice infected either by GP1V (group 2) or PSTV (group 1), using VACV Western Reserve strain (VACV-WR) as control. METHODS: The severity of the infections was evaluated in BALB/c mice considering diverse clinical signs and defined scores, and the immune responses triggered by GP1V and PSTV infections were analysed by immune cell phenotyping and intra-cytoplasmic cytokines detection. RESULTS: We detected a reduction in total lymphocytes (CD3 +), macrophages (CD14 +), and NK cells (CD3-CD49 +) in animals infected with VACV-WR or GP1V. The VACV-WR and GP1V viruses, belonging to the most virulent group in a murine model, were able to down-modulate the cell immune responses upon mice infection. In contrast, PSTV, a virus considered less virulent in a murine model, showed little ability to down-modulate the mice immune responses. Mice infected with VACV-WR and GP1V viruses presented significant weight loss and developed lesions in their spleens, as well as damage to liver and lungs whereas mice infected with PSTV developed only moderate clinical signs. CONCLUSIONS: Our results suggest that VACV immunomodulation in vivo is clade-related and is proportional to the strain's virulence upon infection. Our data corroborate the classification of the different Brazilian VACV isolates into clades 1 and 2, taking into account not only phylogenetic criteria, but also clinical and immunological data.


Asunto(s)
Inmunomodulación , Virus Vaccinia , Vaccinia , Animales , Modelos Animales de Enfermedad , Inmunidad Celular , Ratones , Ratones Endogámicos BALB C , Filogenia , Vaccinia/inmunología , Vaccinia/virología , Virus Vaccinia/genética , Virus Vaccinia/patogenicidad , Virulencia
14.
Sci Total Environ ; 766: 142645, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33069469

RESUMEN

The world is experiencing the worst global health crisis in recent decades since December/2019 due to a new pandemic coronavirus. The COVID-19 disease, caused by SARS-CoV-2, has resulted in more than 30 million cases and 950 thousand deaths worldwide as of September 21, 2020. Determining the extent of the virus on public surfaces is critical for understanding the potential risk of infection in these areas. In this study, we investigated the presence of SARS-CoV-2 RNA on public surfaces in a densely populated urban area in Brazil. Forty-nine of 933 samples tested positive (5.25%) for SARS-CoV-2 RNA, including samples collected from distinct material surfaces, including metal and concrete, and distinct places, mainly around hospital care units and public squares. Our data indicated the contamination of public surfaces by SARS-CoV-2, suggesting the circulation of infected patients and the risk of infection for the population. Constant monitoring of the virus in urban areas is required as a strategy to fight the pandemic and prevent further infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , Humanos , Pandemias , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...