Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105745, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354784

RESUMEN

The NEET proteins, an important family of iron-sulfur (Fe-S) proteins, have generated a strong interest due to their involvement in diverse diseases such as cancer, diabetes, and neurodegenerative disorders. Among the human NEET proteins, CISD3 has been the least studied, and its functional role is still largely unknown. We have investigated the biochemical features of CISD3 at the atomic and in cellulo levels upon challenge with different stress conditions i.e., iron deficiency, exposure to hydrogen peroxide, and nitric oxide. The redox and cellular stability properties of the protein agree on a predominance of reduced form of CISD3 in the cells. Upon the addition of iron chelators, CISD3 loses its Fe-S clusters and becomes unstructured, and its cellular level drastically decreases. Chemical shift perturbation measurements suggest that, upon cluster oxidation, the protein undergoes a conformational change at the C-terminal CDGSH domain, which determines the instability of the oxidized state. This redox-associated conformational change may be the source of cooperative electron transfer via the two [Fe2S2] clusters in CISD3, which displays a single sharp voltammetric signal at -31 mV versus SHE. Oxidized CISD3 is particularly sensitive to the presence of hydrogen peroxide in vitro, whereas only the reduced form is able to bind nitric oxide. Paramagnetic NMR provides clear evidence that, upon NO binding, the cluster is disassembled but iron ions are still bound to the protein. Accordingly, in cellulo CISD3 is unaffected by oxidative stress induced by hydrogen peroxide but it becomes highly unstable in response to nitric oxide treatment.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Mitocondriales , Óxido Nítrico , Humanos , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Células HEK293 , Estabilidad Proteica
2.
J Biomol NMR ; 77(5-6): 247-259, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37853207

RESUMEN

The robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed Cα/C' connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation. Optimized 13C direct detected experiments can significantly extend the available assignments, improving the overall knowledge of these systems. The different relaxation properties of Cα and C' nuclei are exploited in CACO vs COCA experiments and the complementarity of the two experiments is used to obtain structural information. The two [Fe2S2]+ clusters containing NEET protein CISD3 and the one [Fe4S4]2+ cluster containing HiPIP protein PioC have been taken as model systems. We show that tailored experiments contribute to decrease the blind sphere around the cluster, to extend resonance assignment of cluster bound cysteine residues and to retrieve details on the topology of the iron-bound ligand residues.


Asunto(s)
Proteínas Hierro-Azufre , Resonancia Magnética Nuclear Biomolecular , Proteínas Hierro-Azufre/química , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética , Cisteína
3.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37628894

RESUMEN

Distances between Fe ions in multiheme cytochromes are sufficiently short to make the intramolecular dipole-dipole interaction between hemes probable. In the analysis of EPR data from cytochromes, this interaction has thus far been ignored under the assumption that spectra are the simple sum of non-interacting components. Here, we use a recently developed low-frequency broadband EPR spectrometer to establish the extent of dipolar interaction in the example cytochromes, characterize its spectral signatures, and identify present limitations in the analysis. Broadband EPR spectra of Shewanella oneidensis MR-1 small tetraheme cytochrome (STC) have been collected over the frequency range of 0.45 to 13.11 GHz, and they have been compared to similar data from Desulfovibrio vulgaris Hildenborough cytochrome c3. The two cases are representative examples of two very different heme topologies and corresponding electron-transfer properties in tetraheme proteins. While in cytochrome c3, the six Fe-Fe distances can be sorted into two well-separated groups, those in STC are diffuse. Since the onset of dipolar interaction between Fe-Fe pairs is already observed in the X-band, the g values are determined in the simulation of the 13.11 GHz spectrum. Low-frequency spectra are analyzed with the inclusion of dipolar interaction based on available structural data on mutual distances and orientations between all hemes. In this procedure, all 24 possible assignments of individual heme spectra to heme topologies are sampled. The 24 configurations can be reduced to a few, but inspection falls short of a unique assignment, due to a remaining lack of understanding of the fine details of these complex spectra. In general, the EPR analysis suggests the four-heme system in c3 to be more rigid than that in STC, which is proposed to be related to different physiological roles in electron transfer.


Asunto(s)
Citocromos c , Hemo , Transporte de Electrón , Movimiento Celular , Simulación por Computador
4.
Molecules ; 28(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375288

RESUMEN

Rhodopseudomonas palustris is an alphaproteobacterium with impressive metabolic versatility, capable of oxidizing ferrous iron to fix carbon dioxide using light energy. Photoferrotrophic iron oxidation is one of the most ancient metabolisms, sustained by the pio operon coding for three proteins: PioB and PioA, which form an outer-membrane porin-cytochrome complex that oxidizes iron outside of the cell and transfers the electrons to the periplasmic high potential iron-sulfur protein (HIPIP) PioC, which delivers them to the light-harvesting reaction center (LH-RC). Previous studies have shown that PioA deletion is the most detrimental for iron oxidation, while, the deletion of PioC resulted in only a partial loss. The expression of another periplasmic HiPIP, designated Rpal_4085, is strongly upregulated in photoferrotrophic conditions, making it a strong candidate for a PioC substitute. However, it is unable to reduce the LH-RC. In this work we used NMR spectroscopy to map the interactions between PioC, PioA, and the LH-RC, identifying the key amino acid residues involved. We also observed that PioA directly reduces the LH-RC, and this is the most likely substitute upon PioC deletion. By contrast, Rpal_4085 demontrated significant electronic and structural differences from PioC. These differences likely explain its inability to reduce the LH-RC and highlight its distinct functional role. Overall, this work reveals the functional resilience of the pio operon pathway and further highlights the use of paramagnetic NMR for understanding key biological processes.


Asunto(s)
Hierro , Rhodopseudomonas , Hierro/metabolismo , Oxidación-Reducción , Rhodopseudomonas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Biochim Biophys Acta Bioenerg ; 1864(3): 148983, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127243

RESUMEN

Rhodothermus marinus is a thermohalophilic organism that has optimized its microaerobic metabolism at 65 °C. We have been exploring its respiratory chain and observed the existence of a quinone:cytochrome c oxidoreductase complex, named Alternative Complex III, structurally different from the bc1 complex. In the present work, we took profit from nanodiscs and liposomes technology to investigate ACIII activity in membrane-mimicking systems. In addition, we studied the interaction of ACIII with menaquinone, its potential electron acceptors (HiPIP and cytochrome c) and the caa3 oxygen reductase.


Asunto(s)
Citocromos c , Complejo III de Transporte de Electrones , Transporte de Electrón , Oxidorreductasas
6.
mBio ; 14(1): e0258922, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36645302

RESUMEN

Many bacteria of the genus Shewanella are facultative anaerobes able to reduce a broad range of soluble and insoluble substrates, including Fe(III) mineral oxides. Under anoxic conditions, the bacterium Shewanella oneidensis MR-1 uses a porin-cytochrome complex (Mtr) to mediate extracellular electron transfer (EET) across the outer membrane to extracellular substrates. However, it is unclear how EET prevents generating harmful reactive oxygen species (ROS) when exposed to oxic environments. The Mtr complex is expressed under anoxic and oxygen-limited conditions and contains an extracellular MtrC subunit. This has a conserved CX8C motif that inhibits aerobic growth when removed. This inhibition is caused by an increase in ROS that kills the majority of S. oneidensis cells in culture. To better understand this effect, soluble MtrC isoforms with modified CX8C were isolated. These isoforms produced increased concentrations of H2O2 in the presence of flavin mononucleotide (FMN) and greatly increased the affinity between MtrC and FMN. X-ray crystallography revealed that the molecular structure of MtrC isoforms was largely unchanged, while small-angle X-ray scattering suggested that a change in flexibility was responsible for controlling FMN binding. Together, these results reveal that FMN reduction in S. oneidensis MR-1 is controlled by the redox-active disulfide on the cytochrome surface. In the presence of oxygen, the disulfide forms, lowering the affinity for FMN and decreasing the rate of peroxide formation. This cysteine pair consequently allows the cell to respond to changes in oxygen level and survive in a rapidly transitioning environment. IMPORTANCE Bacteria that live at the oxic/anoxic interface have to rapidly adapt to changes in oxygen levels within their environment. The facultative anaerobe Shewanella oneidensis MR-1 can use EET to respire in the absence of oxygen, but on exposure to oxygen, EET could directly reduce extracellular oxygen and generate harmful reactive oxygen species that damage the bacterium. By modifying an extracellular cytochrome called MtrC, we show how preventing a redox-active disulfide from forming causes the production of cytotoxic concentrations of peroxide. The disulfide affects the affinity of MtrC for the redox-active flavin mononucleotide, which is part of the EET pathway. Our results demonstrate how a cysteine pair exposed on the surface controls the path of electron transfer, allowing facultative anaerobic bacteria to rapidly adapt to changes in oxygen concentration at the oxic/anoxic interface.


Asunto(s)
Cisteína , Shewanella , Especies Reactivas de Oxígeno/metabolismo , Cisteína/metabolismo , Compuestos Férricos/metabolismo , Mononucleótido de Flavina/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Citocromos/metabolismo , Transporte de Electrón , Shewanella/genética , Shewanella/metabolismo , Flavinas/metabolismo , Oxígeno/metabolismo , Disulfuros/metabolismo
8.
Front Microbiol ; 13: 913311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35801113

RESUMEN

Sporomusa ovata is a bacterium that can accept electrons from cathodes to drive microbial electrosynthesis (MES) of acetate from carbon dioxide. It is the biocatalyst with the highest acetate production rate described. Here we review the research on S. ovata across different disciplines, including microbiology, biochemistry, engineering, and materials science, to summarize and assess the state-of-the-art. The improvement of the biocatalytic capacity of S. ovata in the last 10 years, using different optimization strategies is described and discussed. In addition, we propose possible electron uptake routes derived from genetic and experimental data described in the literature and point out the possibilities to understand and improve the performance of S. ovata through genetic engineering. Finally, we identify current knowledge gaps guiding further research efforts to explore this promising organism for the MES field.

9.
Front Biosci (Landmark Ed) ; 27(6): 174, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35748250

RESUMEN

Extracellular electron transfer is a key metabolic process of many organisms that enables them to exchange electrons with extracellular electron donors/acceptors. The discovery of organisms with these abilities and the understanding of their electron transfer processes has become a priority for the scientific and industrial community, given the growing interest on the use of these organisms in sustainable biotechnological processes. For example, in bioelectrochemical systems electrochemical active organisms can exchange electrons with an electrode, allowing the production of energy and added-value compounds, among other processes. In these systems, electrochemical active organisms exchange electrons with an electrode through direct or indirect mechanisms, using, in most cases, multiheme cytochromes. In numerous electroactive organisms, these proteins form a conductive pathway that allows electrons produced from cellular metabolism to be transferred across the cell surface for the reduction of an electrode, or vice-versa. Here, the mechanisms by which the most promising electroactive bacteria perform extracellular electron transfer will be reviewed, emphasizing the proteins involved in these pathways. The ability of some of the organisms to perform bidirectional electron transfer and the pathways used will also be highlighted.


Asunto(s)
Citocromos , Electrones , Electrodos , Transporte de Electrón , Oxidación-Reducción
10.
Mol Biol Evol ; 39(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35714268

RESUMEN

Multiheme cytochromes play key roles in diverse biogeochemical cycles, but understanding the origin and evolution of these proteins is a challenge due to their ancient origin and complex structure. Up until now, the evolution of multiheme cytochromes composed by multiple redox modules in a single polypeptide chain was proposed to occur by gene fusion events. In this context, the pentaheme nitrite reductase NrfA and the tetraheme cytochrome c554 were previously proposed to be at the origin of the extant octa- and nonaheme cytochrome c involved in metabolic pathways that contribute to the nitrogen, sulfur, and iron biogeochemical cycles by a gene fusion event. Here, we combine structural and character-based phylogenetic analysis with an unbiased root placement method to refine the evolutionary relationships between these multiheme cytochromes. The evidence show that NrfA and cytochrome c554 belong to different clades, which suggests that these two multiheme cytochromes are products of truncation of ancestral octaheme cytochromes related to extant octaheme nitrite reductase and MccA, respectively. From our phylogenetic analysis, the last common ancestor is predicted to be an octaheme cytochrome with nitrite reduction ability. Evolution from this octaheme framework led to the great diversity of extant multiheme cytochromes analyzed here by pruning and grafting of protein modules and hemes. By shedding light into the evolution of multiheme cytochromes that intervene in different biogeochemical cycles, this work contributes to our understanding about the interplay between biology and geochemistry across large time scales in the history of Earth.


Asunto(s)
Citocromos , Hemo , Citocromos/química , Citocromos/genética , Citocromos/metabolismo , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Oxidación-Reducción , Filogenia
11.
J Inorg Biochem ; 234: 111871, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35636014

RESUMEN

Metalloproteins represent a substantial fraction of the proteome where they have an outsized contribution to enzymology. This stems from the reactivity of transition metals found in the active sites of numerous classes of enzymes that undergo redox and/or spin-state transitions. Notwithstanding, NMR structures of metalloproteins deposited in the PDB are under-represented and NMR studies exploring paramagnetic states are a minute fraction of the overall database content. This state of affairs contrasts with the early recognition that paramagnetic proteins offer unique opportunities for structure-function studies which are not available for diamagnetic proteins. Recent development of novel pulse sequences that minimize quenching of signal intensity that arises from the presence of a paramagnetic center in metalloproteins is extending even further the range of systems which can be studied by solution-state NMR. In this manuscript we review solution-state NMR applications to paramagnetic proteins, highlighting the developments in both methodologies and data interpretation, laying bare the vast range of opportunities for paramagnetic NMR to contribute to the understanding of structure and function of metalloenzymes and biomimetic metallocatalysts.


Asunto(s)
Metaloproteínas , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Metaloproteínas/química
12.
Biomolecules ; 12(4)2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454139

RESUMEN

Cytochromes-c are ubiquitous heme proteins with enormous impact at the cellular level, being key players in metabolic processes such as electron transfer chains and apoptosis. The assembly of these proteins requires maturation systems that catalyse the formation of the covalent thioether bond between two cysteine residues and the vinyl groups of the heme. System III is the maturation system present in Eukaryotes, designated CcHL or HCCS. This System requires a specific amino acid sequence in the apocytochrome to be recognized as a substrate and for heme insertion. To explore the recognition mechanisms of CcHL, the bacterial tetraheme cytochrome STC from Shewanella oneidensis MR-1, which is not a native substrate for System III, was mutated to be identified as a substrate. The results obtained show that it is possible to convert a bacterial cytochrome as a substrate by CcHL, but the presence of the recognition sequence is not the only factor that induces the maturation of a holocytochrome by System III. The location of this sequence in the polypeptide also plays a role in the maturation of the c-type cytochrome. Furthermore, CcHL appears to be able to catalyse the binding of only one heme per polypeptide chain, being unable to assemble multiheme cytochromes c, in contrast with bacterial maturation systems.


Asunto(s)
Citocromos c , Liasas , Citocromos c/metabolismo , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Hemo/metabolismo , Liasas/metabolismo
13.
Microorganisms ; 11(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36677373

RESUMEN

Multiheme cytochromes play a central role in extracellular electron transfer, a process that allows microorganisms to sustain their metabolism with external electron acceptors or donors. In Shewanella oneidensis MR-1, the decaheme cytochromes OmcA and MtrC show functional specificity for interaction with soluble and insoluble redox partners. In this work, the capacity of extracellular electron transfer by mutant variants of S. oneidensis MR-1 OmcA was investigated. The results show that amino acid mutations can affect protein stability and alter the redox properties of the protein, without affecting the ability to perform extracellular electron transfer to methyl orange dye or a poised electrode. The results also show that there is a good correlation between the reduction of the dye and the current generated at the electrode for most but not all mutants. This observation opens the door for investigations of the molecular mechanisms of interaction with different electron acceptors to tailor these surface exposed cytochromes towards specific bio-based applications.

14.
Microorganisms ; 9(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572691

RESUMEN

Bioelectrochemical systems (BES) are emerging as a suite of versatile sustainable technologies to produce electricity and added-value compounds from renewable and carbon-neutral sources using electroactive organisms. The incomplete knowledge on the molecular processes that allow electroactive organisms to exchange electrons with electrodes has prevented their real-world implementation. In this manuscript we investigate the extracellular electron transfer processes performed by the thermophilic Gram-positive bacteria belonging to the Thermincola genus, which were found to produce higher levels of current and tolerate higher temperatures in BES than mesophilic Gram-negative bacteria. In our study, three multiheme c-type cytochromes, Tfer_0070, Tfer_0075, and Tfer_1887, proposed to be involved in the extracellular electron transfer pathway of T. ferriacetica, were cloned and over-expressed in E. coli. Tfer_0070 (ImdcA) and Tfer_1887 (PdcA) were purified and biochemically characterized. The electrochemical characterization of these proteins supports a pathway of extracellular electron transfer via these two proteins. By contrast, Tfer_0075 (CwcA) could not be stabilized in solution, in agreement with its proposed insertion in the peptidoglycan wall. However, based on the homology with the outer-membrane cytochrome OmcS, a structural model for CwcA was developed, providing a molecular perspective into the mechanisms of electron transfer across the peptidoglycan layer in Thermincola.

15.
Chem Commun (Camb) ; 57(8): 990-993, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399143

RESUMEN

Fe-Mimochrome VI*a is a synthetic peroxidase and peroxygenase, featuring two different peptides that are covalently-linked to deuteroheme. To perform a systematic structure/function correlation, we purposely shortened the distance between the distal peptide and the heme, allowing for the separation and characterization of two regioisomers. They differ in both His axial-ligand orientation, as determined by paramagnetic NMR shifts, and activity. These findings highlight that synthetic metalloenzymes may provide an efficient tool for disentangling the role of axial ligand orientation over peroxidase activity.


Asunto(s)
Histidina/química , Peroxidasas/síntesis química , Peroxidasas/metabolismo , Secuencia de Aminoácidos , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Conformación Proteica
16.
FEBS J ; 288(9): 3010-3023, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33124176

RESUMEN

Metalloproteins play key roles across biology, and knowledge of their structure is essential to understand their physiological role. For those metalloproteins containing paramagnetic states, the enhanced relaxation caused by the unpaired electrons often makes signal detection unfeasible near the metal center, precluding adequate structural characterization right where it is more biochemically relevant. Here, we report a protein structure determination by NMR where two different sets of restraints, one containing Nuclear Overhauser Enhancements (NOEs) and another containing Paramagnetic Relaxation Enhancements (PREs), are used separately and eventually together. The protein PioC from Rhodopseudomonas palustris TIE-1 is a High Potential Iron-Sulfur Protein (HiPIP) where the [4Fe-4S] cluster is paramagnetic in both oxidation states at room temperature providing the source of PREs used as alternative distance restraints. Comparison of the family of structures obtained using NOEs only, PREs only, and the combination of both reveals that the pairwise root-mean-square deviation (RMSD) between them is similar and comparable with the precision within each family. This demonstrates that, under favorable conditions in terms of protein size and paramagnetic effects, PREs can efficiently complement and eventually replace NOEs for the structural characterization of small paramagnetic metalloproteins and de novo-designed metalloproteins by NMR. DATABASES: The 20 conformers with the lowest target function constituting the final family obtained using the full set of NMR restraints were deposited to the Protein Data Bank (PDB ID: 6XYV). The 20 conformers with the lowest target function obtained using NOEs only (PDB ID: 7A58) and PREs only (PDB ID: 7A4L) were also deposited to the Protein Data Bank. The chemical shift assignments were deposited to the BMRB (code 34487).


Asunto(s)
Proteínas Bacterianas/ultraestructura , Proteínas Hierro-Azufre/ultraestructura , Metaloproteínas/ultraestructura , Proteínas del Complejo del Centro de Reacción Fotosintética/ultraestructura , Conformación Proteica , Rhodopseudomonas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Electrones , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Metaloproteínas/química , Metaloproteínas/genética , Modelos Moleculares , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodopseudomonas/química
17.
J Biomol NMR ; 74(8-9): 431-442, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32710399

RESUMEN

The enhancement of nuclear relaxation rates due to the interaction with a paramagnetic center (known as Paramagnetic Relaxation Enhancement) is a powerful source of structural and dynamics information, widely used in structural biology. However, many signals affected by the hyperfine interaction relax faster than the evolution periods of common NMR experiments and therefore they are broadened beyond detection. This gives rise to a so-called blind sphere around the paramagnetic center, which is a major limitation in the use of PREs. Reducing the blind sphere is extremely important in paramagnetic metalloproteins. The identification, characterization, and proper structural restraining of the first coordination sphere of the metal ion(s) and its immediate neighboring regions is key to understand their biological function. The novel HSQC scheme we propose here, that we termed R2-weighted, HSQC-AP, achieves this aim by detecting signals that escaped detection in a conventional HSQC experiment and provides fully reliable R2 values in the range of 1H R2 rates ca. 50-400 s-1. Independently on the type of paramagnetic center and on the size of the molecule, this experiment decreases the radius of the blind sphere and increases the number of detectable PREs. Here, we report the validation of this approach for the case of PioC, a small protein containing a high potential 4Fe-4S cluster in the reduced [Fe4S4]2+ form. The blind sphere was contracted to a minimal extent, enabling the measurement of R2 rates for the cluster coordinating residues.


Asunto(s)
Espectroscopía de Resonancia Magnética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Algoritmos , Conformación Proteica
18.
Biomol NMR Assign ; 14(2): 211-215, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32415427

RESUMEN

High potential iron-sulfur proteins (HiPIPs) are a class of small proteins (50-100 aa residues), containing a 4Fe-4S iron-sulfur cluster. The 4Fe-4S cluster shuttles between the oxidation states [Fe4S4]3+/2+, with a positive redox potential in the range (500-50 mV) throughout the different known HiPIPs. Both oxidation states are paramagnetic at room temperature. HiPIPs are electron transfer proteins, isolated from photosynthetic bacteria and usually provide electrons to the photosynthetic reaction-center. PioC, the HIPIP isolated from Rhodopseudomonas palustris TIE-1, is the smallest among all known HiPIPs. Despite their small dimensions, an extensive NMR assignment is only available for two of them, because paramagnetism prevents the straightforward assignment of all resonances. We report here the complete NMR assignment of 1H, 13C and 15N signals for the reduced [Fe4S4]2+ state of the protein. A set of double and triple resonance experiments performed with standardized parameters/datasets provided the assignment of about 72% of the residues. The almost complete resonance assignment (99.5% of backbone and ca. 90% of side chain resonances) was achieved by combining the above information with those obtained using a second set of NMR experiments, in which acquisition and processing parameters, as well as pulse sequences design, were optimized to account for the peculiar features of this paramagnetic protein.


Asunto(s)
Proteínas Bacterianas/análisis , Espectroscopía de Resonancia Magnética con Carbono-13 , Proteínas Hierro-Azufre/análisis , Proteínas del Complejo del Centro de Reacción Fotosintética/análisis , Espectroscopía de Protones por Resonancia Magnética , Rhodopseudomonas/metabolismo , Proteínas Bacterianas/química , Proteínas Hierro-Azufre/química , Isótopos de Nitrógeno , Proteínas del Complejo del Centro de Reacción Fotosintética/química
19.
J Inorg Biochem ; 203: 110889, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31707335

RESUMEN

At low oxygen concentrations, respiration of Pseudomonas aeruginosa (Pa) and other bacteria relies on activity of cytochrome cbb3 oxidases. A diheme cytochrome c4 (cyt c4) donates electrons to Pa cbb3 oxidases to enable oxygen reduction and proton pumping by these enzymes. Given the importance of this redox pathway for bacterial pathogenesis, both cyt c4 and cbb3 oxidase are potential targets for new antibacterial strategies. The structural information about these two proteins, however, is scarce, and functional insights for Pa and other bacteria have been primarily drawn from analyses of the analogous system from Pseudomonas stutzeri (Ps). Herein, we describe characterization of structural and redox properties of cyt c4 from Pa. The crystal structure of Pa cyt c4 has revealed that this protein is organized in two monoheme domains. The interdomain interface is more hydrophobic in Pa cyt c4, and the protein surface does not show the dipolar distribution of charges found in Ps cyt c4. The reduction potentials of the two hemes are similar in Pa cyt c4 but differ by about 100 mV in Ps cyt c4. Analyses of structural models of these and other cyt c4 proteins suggest that multiple factors contribute to the potential difference of the two hemes in these proteins, including solvent accessibility of the heme group, the distribution of surface charges, and the nature of the interdomain interface. The distinct properties of cyt c4 proteins from closely-related Pa and Ps bacteria emphasize the importance of examining the cbb3/cyt c4 redox pathway in multiple species.


Asunto(s)
Proteínas Bacterianas/química , Grupo Citocromo c/química , Electrones , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Grupo Citocromo c/metabolismo , Hemo/química , Hemo/metabolismo , Hierro/química , Hierro/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Unión Proteica , Pseudomonas aeruginosa/enzimología
20.
Adv Microb Physiol ; 75: 69-135, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31655743

RESUMEN

Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.


Asunto(s)
Citocromos c/metabolismo , Hemo/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...