Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(3): e14315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693794

RESUMEN

Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed.


Asunto(s)
Brassica napus , Nitrógeno , Fenotipo , Raíces de Plantas , Sitios de Carácter Cuantitativo , Raíces de Plantas/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Nitrógeno/metabolismo , Sitios de Carácter Cuantitativo/genética , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/anatomía & histología , Brassica napus/metabolismo , Genotipo , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Biomasa , Nitratos/metabolismo , Mapeo Cromosómico , Variación Genética
2.
Front Plant Sci ; 11: 568009, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178235

RESUMEN

The root system is responsible for soil resources acquisition. Hence, optimizing crop root characteristics has considerable implications for agricultural production. This study evaluated a panel of twenty-eight European modern cultivars of oilseed rape (Brassica napus L.) cultivated in laboratory and field environments. Root morphology was screened using a high-throughput hydroponic growth system with two divergent nitrogen supplies. The panel showed an important diversity for biomass production and root morphological traits. Differences in root and shoot dry biomasses and lateral root length were mainly explained by the genotype, and differences in primary root length by nitrogen nutrition. The cultivars were tested in a pluriannual field trial. The field variation for yield and seed quality traits attributed to the genotype was more important than the year or the genotype × year interaction effects. The total root length measured at the seedling stage could predict the proportion of nitrogen taken up from the field and reallocated to seed organs, a component of the nitrogen use efficiency. The genetic interrelationship between cultivars, established with simple sequence repeat markers, indicated a very narrow genetic base. Positive correlations were found between the genetic distance measures, root morphological traits during nitrogen depletion and yield components. This study illustrates a root phenotyping screen in the laboratory with a proof of concept evaluation in the field. The results could assist future genetic improvements in oilseed rape for desirable root characteristics to reduce nutrient losses in the environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA