Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 161: 107143, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35176575

RESUMEN

With the advent of the SARS-CoV-2 pandemic, Wastewater-Based Epidemiology (WBE) has been applied to track community infection in cities worldwide and has proven succesful as an early warning system for identification of hotspots and changingprevalence of infections (both symptomatic and asymptomatic) at a city or sub-city level. Wastewater is only one of environmental compartments that requires consideration. In this manuscript, we have critically evaluated the knowledge-base and preparedness for building early warning systems in a rapidly urbanising world, with particular attention to Africa, which experiences rapid population growth and urbanisation. We have proposed a Digital Urban Environment Fingerprinting Platform (DUEF) - a new approach in hazard forecasting and early-warning systems for global health risks and an extension to the existing concept of smart cities. The urban environment (especially wastewater) contains a complex mixture of substances including toxic chemicals, infectious biological agents and human excretion products. DUEF assumes that these specific endo- and exogenous residues, anonymously pooled by communities' wastewater, are indicative of community-wide exposure and the resulting effects. DUEF postulates that the measurement of the substances continuously and anonymously pooled by the receiving environment (sewage, surface water, soils and air), can provide near real-time dynamic information about the quantity and type of physical, biological or chemical stressors to which the surveyed systems are exposed, and can create a risk profile on the potential effects of these exposures. Successful development and utilisation of a DUEF globally requires a tiered approach including: Stage I: network building, capacity building, stakeholder engagement as well as a conceptual model, followed by Stage II: DUEF development, Stage III: implementation, and Stage IV: management and utilization. We have identified four key pillars required for the establishment of a DUEF framework: (1) Environmental fingerprints, (2) Socioeconomic fingerprints, (3) Statistics and modelling and (4) Information systems. This manuscript critically evaluates the current knowledge base within each pillar and provides recommendations for further developments with an aim of laying grounds for successful development of global DUEF platforms.


Asunto(s)
COVID-19 , Monitoreo Epidemiológico Basado en Aguas Residuales , COVID-19/epidemiología , Salud Global , Humanos , Pandemias , SARS-CoV-2 , Aguas Residuales
2.
J Theor Biol ; 532: 110921, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34582827

RESUMEN

Mycobacterium tuberculosis can exist within a host for lengthy periods, tolerating even antibiotic challenge. This non-heritable, antibiotic tolerant "persister" state, is thought to underlie latent Tuberculosis (TB) infection and a deeper understanding thereof could inform treatment strategies. In addition to experimental studies, mathematical and computational modelling approaches are widely employed to study persistence from both an in vivo and in vitro perspective. However, specialized models (partial differential equations, agent-based, multiscale, etc.) rely on several difficult to determine parameters. In this study, a dynamic mathematical model was developed to predict the response of Mycobacterium smegmatis (a model organism for M. tuberculosis) grown in batch culture and subjected to a range of in vitro environmental stresses. Lag phase dynamics, pH variations and internal nitrogen storage were mechanistically modelled. Experimental results were used to train model parameters using global optimization, with extensive subsequent model validation to ensure extensibility to more complex modelling frameworks. This included an identifiability analysis which indicated that seven of the thirteen model parameters were uniquely identifiable. Non-identifiable parameters were critically evaluated. Model predictions compared to validation data (based on experimental results not used during training) were accurate with less than 16% maximum absolute percentage error, indicating that the model is accurate even when extrapolating to new experimental conditions. The bulk growth model can be extended to spatially heterogeneous simulations such as an agent-based model to simulate in vitro granuloma models or, eventually, in vivo conditions, where distributed environmental conditions are difficult to measure.


Asunto(s)
Mycobacterium smegmatis , Mycobacterium tuberculosis , Concentración de Iones de Hidrógeno , Modelos Teóricos , Nutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...