Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 108(6): 1455-1460, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38252141

RESUMEN

Prophages/phages are important components of the genome of 'Candidatus Liberibacter asiaticus' (CLas), an unculturable alphaproteobacterium associated with citrus huanglongbing (HLB) disease. Phage variations have significant contributions to CLas strain diversity research, which provide critical information for HLB management. In this study, prophage variations among selected CLas strains from southern Texas were studied. The CLas strains were collected from three different CLas inhabitant environments: citrus leaf, citrus root, and Asian citrus psyllid (ACP), the vector of CLas. Regardless of the different habitats and time span, more than 80% of CLas strains consistently had both Type 1 and Type 2 prophages, the same prophage type profile as in CLas strains from Florida but different to those reported in California and China. Further studies were performed on prophage type diversity. Analyses on Type 1-specific PCR amplicon sequences (encoding an endolysin protein) revealed the presence of two groups: Type 1-A, clustered around prophage SC1 originating from Florida, and Type 1-B, clustered with prophage P-SGCA5-1 originating in California. Type 1-B strains were mostly from ACP of nearby citrus orchards. On the other hand, analyses on Type 2-specific PCR amplicon sequences (encoding a putative hypothetical protein) showed a single group clustering around prophage SC2 originated from Florida, although a different Type 2 prophage has been reported in California. The presence of two distinct Type 1 prophage groups suggested the possibility of two different CLas introductions in southern Texas. The results from this study provide an initial baseline of information on genomic and population diversity of CLas in Texas.


Asunto(s)
Citrus , Filogenia , Enfermedades de las Plantas , Profagos , Profagos/genética , Texas , Citrus/microbiología , Citrus/virología , Enfermedades de las Plantas/microbiología , Variación Genética , Animales , Hemípteros/microbiología , Hemípteros/virología , Rhizobiaceae/genética , Rhizobiaceae/clasificación , Rhizobiaceae/virología , Rhizobiaceae/aislamiento & purificación , Análisis de Secuencia de ADN , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Raíces de Plantas/microbiología , Raíces de Plantas/virología , Datos de Secuencia Molecular , Liberibacter
2.
Plant Pathol J ; 39(4): 309-318, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37550978

RESUMEN

Huanglongbing (HLB) is one of the most destructive diseases in citrus, which imperils the sustainability of citriculture worldwide. The presumed causal agent of HLB, 'Candidatus Liberibacter asiaticus' (CLas) is a non-culturable phloem-limited α-proteobacterium transmitted by Asian citrus psyllids (ACP, Diaphorina citri Kuwayama). A widely adopted method for HLB diagnosis is based on quantitative real-time polymerase chain reaction (qPCR). Although HLB diagnostic qPCR provides high sensitivity and good reproducibility, it is limited by time-consuming DNA preparation from plant tissue or ACP and the requirement of proper lab instruments including a thermal cycler to conduct qPCR. In an attempt to develop a quick assay that can be deployed in the field for CLas detection, we developed a real-time loop-mediated isothermal amplification (rt-LAMP) assay by targeting the CLas five copy nrdB gene. The rt-LAMP assay using various plant sample types and psyllids successfully detected the nrdB target as low as ~2.6 Log10 copies. Although the rt-LAMP assay was less sensitive than laboratory-based qPCR (detection limit ~10 copies), the data obtained with citrus leaf and bark and ACP showed that the rt-LAMP assay has >96% CLas detection rate, compared to that of laboratory-based qPCR. However, the CLas detection rate in fibrous roots was significantly decreased compared to qPCR due to low CLas titer in some root DNA sample. We also demonstrated that the rt-LAMP assay can be used with a crude leaf DNA extract which is fully deployable in the field for quick and reliable HLB screening.

4.
Sci Rep ; 10(1): 16982, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046775

RESUMEN

Huanglongbing (HLB), or Citrus Greening, is one of the most devastating diseases affecting agriculture today. Widespread throughout Citrus growing regions of the world, it has had severe economic consequences in all areas it has invaded. With no treatment available, management strategies focus on suppression and containment. Effective use of these costly control strategies relies on rapid and accurate identification of infected plants. Unfortunately, symptoms of the disease are slow to develop and indistinct from symptoms of other biotic/abiotic stressors. As a result, diagnosticians have focused on detecting the pathogen, Candidatus Liberibacter asiaticus, by DNA-based detection strategies utilizing leaf midribs for sampling. Recent work has shown that fibrous root decline occurs in HLB-affected trees before symptom development among leaves. Moreover, the pathogen, Ca. Liberibacter asiaticus, has been shown to be more evenly distributed within roots than within the canopy. Motivated by these observations, a longitudinal study of young asymptomatic trees was established to observe the spread of disease through time and test the relative effectiveness of leaf- and root-based detection strategies. Detection of the pathogen occurred earlier, more consistently, and more often in root samples than in leaf samples. Moreover, little influence of geography or host variety was found on the probability of detection.


Asunto(s)
Citrus/fisiología , ADN de Plantas/genética , Infecciones por Bacterias Gramnegativas/diagnóstico , Liberibacter/fisiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/fisiología , Carga Bacteriana , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa
5.
Phytopathology ; 106(7): 702-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27050571

RESUMEN

Detection of 'Candidatus Liberibacter asiaticus' represents one of the most difficult, yet critical, steps of controlling Huanglongbing disease. Efficient detection relies on understanding the underlying distribution of bacteria within trees. To that end, we studied the distribution of 'Ca. L. asiaticus' in leaves of 'Rio Red' grapefruit trees and in roots of 'Valencia' sweet orange trees grafted onto sour orange rootstock. We performed two sets of leaf collection on grapefruit trees; the first a selective sampling targeting symptomatic leaves and their neighbors and the second a systematic collection disregarding symptomology. From uprooted orange trees, we exhaustively sampled fibrous roots. In this study, the presence of 'Ca. L. asiaticus' was detected in leaves using real-time polymerase chain reaction (PCR) targeting the 16S ribosomal gene and in roots using the rpIJ/rpIL ribosomal protein genes and was confirmed with conventional PCR and sequencing of the rpIJ/rpIL gene in both tissues. Among randomly collected leaves, 'Ca. L. asiaticus' was distributed in a patchy fashion. Detection of 'Ca. L. asiaticus' varied with leaf symptomology with symptomatic leaves showing the highest frequency (74%) followed by their neighboring asymptomatic leaves (30%), while randomly distributed asymptomatic leaves had the lowest frequency (20%). Among symptomatic leaves, we found statistically significant differences in mean number of bacterial cells with respect to both increasing distance of the leaf from the trunk and cardinal direction. The titer of 'Ca. L. asiaticus' cells was significantly greater on the north side of trees than on the south and west sides. Moreover, these directions showed different spatial distributions of 'Ca. L. asiaticus' with higher titers near the trunk on the south and west sides as opposed to further from the trunk on the north side. Similarly, we found spatial variation in 'Ca. L. asiaticus' distribution among root samples. 'Ca. L. asiaticus' was detected more frequently and bacterial abundances were higher among horizontally growing roots just under the soil surface (96%) than among deeper vertically growing roots (78%). Bacterial abundance declined slightly with distance from the trunk. These results point to paths of research that will likely prove useful to combating this devastating disease.


Asunto(s)
Citrus/microbiología , Rhizobiaceae/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Texas
6.
Plant Cell Rep ; 34(6): 929-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25640468

RESUMEN

KEY MESSAGE: Suspension cell cultures of rice minichromosomes were established. The minichromosomes in suspension cultured cells were mitotically stable and had active gene expression, thus have the potential to be used as gene expression vectors to produce valuable bioactive products. The plant artificial chromosome (PAC) is a novel vector for plant genetic engineering to produce genetically modified crops with multiple transgenes, or to produce valuable bioactive products through the expression of multiple genes or biochemical pathways as a bioreactor. PAC is mainly constructed by engineered minichromosomes through telomere-mediated chromosome truncations. We have constructed rice minichromosomes in a previous study. Thus, the understanding of rice minichromosome inheritance under different culture conditions has potential importance for their utility in future studies and applications. In this study, we performed suspension cultures of three rice minichromosome-containing cell lines, 1004-111, 1008-100 and 1004-011. Two cell lines, 1004-111 and 1008-100, showed typical S growth pattern consisting of a lag phase, an active growing exponential phase and a stationary phase, whereas cell line 1004-011 grew very slowly and eventually died. Both 1004-111 and 1008-100 minichromosomes were stably transmitted in cell suspension cultures without any abnormality. Foreign gene expression was verified from 1004-111 and 1008-100 minichromosomes in suspension cultures. The stable mitotic inheritance of minichromosomes and gene expression from them indicated that rice minichromosomes could be maintained and propagated in cell suspension cultures. This study tested key parameters for suspension cultures of rice cell lines with minichromosomes, and proved in concept the potential for industrial use of PAC vectors as bioreactors.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Cromosomas Artificiales , Oryza/citología , Oryza/genética , Línea Celular , Cromosomas de las Plantas , Hibridación Fluorescente in Situ , Cinetina/farmacología , Mitosis , Oryza/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA