Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 20(17): 4846-53, 2001 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-11532948

RESUMEN

The genetic code is defined by the specific aminoacylations of tRNAs by aminoacyl-tRNA synthetases. Although the synthetases are widely conserved through evolution, aminoacylation of a given tRNA is often system specific-a synthetase from one source will not acylate its cognate tRNA from another. This system specificity is due commonly to variations in the sequence of a critical tRNA identity element. In bacteria and the cytoplasm of eukaryotes, an acceptor stem G3:U70 base pair marks a tRNA for aminoacylation with alanine. In contrast, Drosophila melanogaster (Dm) mitochondrial (mt) tRNA(Ala) has a G2:U71 but not a G3:U70 pair. Here we show that this translocated G:U and the adjacent G3:C70 are major determinants for recognition by Dm mt alanyl-tRNA synthetase (AlaRS). Additionally, G:U at the 3:70 position serves as an anti-determinant for Dm mt AlaRS. Consequently, the mitochondrial enzyme cannot charge cytoplasmic tRNA(Ala). All insect mitochondrial AlaRSs appear to have split apart recognition of mitochondrial from cytoplasmic tRNA(Ala) by translocation of G:U. This split may be essential for preventing introduction of ambiguous states into the genetic code.


Asunto(s)
Alanina-ARNt Ligasa/genética , Aminoacil-ARNt Sintetasas/genética , Insectos/genética , Conformación de Ácido Nucleico , ARN de Transferencia de Alanina/genética , ARN/genética , Alanina-ARNt Ligasa/metabolismo , Animales , Artrópodos/genética , Emparejamiento Base , Secuencia de Bases , Bombyx/genética , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Escherichia coli/genética , Humanos , Cinética , ARN Mitocondrial , Saccharomyces cerevisiae/genética , Spodoptera/genética , Translocación Genética
2.
J Biol Chem ; 275(18): 13394-7, 2000 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-10788449

RESUMEN

Plants and certain protists use cycloeucalenol cycloisomerase (EC ) to convert pentacyclic cyclopropyl sterols to conventional tetracyclic sterols. We used a novel complementation strategy to clone a cycloeucalenol cycloisomerase cDNA. Expressing an Arabidopsis thaliana cycloartenol synthase cDNA in a yeast lanosterol synthase mutant provided a sterol auxotroph that could be genetically complemented with the isomerase. We transformed this yeast strain with an Arabidopsis yeast expression library and selected sterol prototrophs to obtain a strain that accumulated biosynthetic ergosterol. The novel phenotype was conferred by an Arabidopsis cDNA that potentially encodes a 36-kDa protein. We expressed this cDNA (CPI1) in Escherichia coli and showed by gas chromatography-mass spectrometry that extracts from this strain isomerized cycloeucalenol to obtusifoliol in vitro. The cDNA will be useful for obtaining heterologously expressed protein for catalytic studies and elucidating the in vivo roles of cyclopropyl sterols.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Liasas Intramoleculares/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Escherichia coli , Isomerasas/genética , Datos de Secuencia Molecular
3.
Lipids ; 35(3): 249-55, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10783001

RESUMEN

Cycloartenol synthase converts oxidosqualene to cycloartenol, the first carbocyclic intermediate en route to sterols in plants and many protists. Presented here is the first cycloartenol synthase gene identified from a protist, the cellular slime mold Dictyostelium discoideum. The cDNA encodes an 81-kDa predicted protein 50-52% identical to known higher plant cycloartenol synthases and 40-49% identical to known lanosterol synthases from fungi and mammals. The encoded protein expressed in transgenic Saccharomyces cerevisiae converted synthetic oxidosqualene to cycloartenol in vitro. This product was characterized by 1H and 13C nuclear magnetic resonance and gas chromatography-mass spectrometry. The predicted protein sequence diverges sufficiently from the known cycloartenol synthase sequences to dramatically reduce the number of residues that are candidates for the catalytic difference between cycloartenol and lanosterol formation.


Asunto(s)
Dictyostelium/enzimología , Transferasas Intramoleculares/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario , Dictyostelium/genética , Humanos , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Mamíferos , Datos de Secuencia Molecular , Plantas/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
4.
Biochemistry ; 38(31): 9804-12, 1999 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-10433686

RESUMEN

Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme responsible for the catabolism of neuromodulatory fatty acid amides, including anandamide and oleamide. FAAH's primary structure identifies this enzyme as a member of a diverse group of alkyl amidases, known collectively as the "amidase signature family". At present, this enzyme family's catalytic mechanism remains poorly understood. In this study, we investigated the catalytic features of FAAH through mutagenesis, affinity labeling, and steady-state kinetic methods. In particular, we focused on the respective roles of three serine residues that are conserved in all amidase signature enzymes (S217, S218, and S241 in FAAH). Mutation of each of these serines to alanine resulted in a FAAH enzyme bearing significant catalytic defects, with the S217A and S218A mutants showing 2300- and 95-fold reductions in k(cat), respectively, and the S241A mutant exhibiting no detectable catalytic activity. The double S217A:S218A FAAH mutant displayed a 230 000-fold decrease in k(cat), supporting independent catalytic functions for these serine residues. Affinity labeling of FAAH with a specific nucleophile reactive inhibitor, ethoxy oleoyl fluorophosphonate, identified S241 as the enzyme's catalytic nucleophile. The pH dependence of FAAH's k(cat) and k(cat)/K(m) implicated a base involved in catalysis with a pK(a) of 7.9. Interestingly, mutation of each of FAAH's conserved histidines (H184, H358, and H449) generated active enzymes, indicating that FAAH does not contain a Ser-His-Asp catalytic triad commonly found in other mammalian serine hydrolytic enzymes. The unusual properties of FAAH identified here suggest that this enzyme, and possibly the amidase signature family as a whole, may hydrolyze amides by a novel catalytic mechanism.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/genética , Mutagénesis Sitio-Dirigida , Marcadores de Afinidad/química , Marcadores de Afinidad/metabolismo , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Dicroismo Circular , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Cinética , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Ácidos Oléicos/química , Ácidos Oléicos/metabolismo , Ratas , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/genética , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA