Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 9(1): 99, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839821

RESUMEN

Vaccination has proven to be a valuable tool to combat SARS-CoV-2. However, reports of rare adverse reactions such as thrombosis/thrombocytopenia syndrome after ChAdOx1 nCoV-19 vaccination have caused scientific, public and media concern. ChAdOx1 was vectorised from the Y25 chimpanzee adenovirus, which was selected due to low human seroprevalence to circumvent pre-existing immunity. In this study, we aimed to explore patterns of T-cell activation after SARS-CoV-2 COVID-19 vaccine exposure in vitro using PBMCs collected from pre-pandemic ChAdOx1 nCoV-19 naïve healthy donors (HDs), and ChAdOx1 nCoV-19 and Pfizer vaccinated controls. PBMCs were assessed for T-cell proliferation using the lymphocyte transformation test (LTT) following exposure to SARS-CoV-2 COVID-19 vaccines. Cytokine analysis was performed via intracellular cytokine staining, ELISpot assay and LEGENDplex immunoassays. T-cell assays performed in pre-pandemic vaccine naïve HDs, revealed widespread lymphocyte stimulation after exposure to ChAdOx1 nCoV-19 (95%), ChAdOx-spike (90%) and the Ad26.COV2. S vaccine, but not on exposure to the BNT162b2 vaccine. ICS analysis demonstrated that CD4+ CD45RO+ memory T-cells are activated by ChAdOx1 nCoV-19 in vaccine naïve HDs. Cytometric immunoassays showed ChAdOx1 nCoV-19 exposure was associated with the release of proinflammatory and cytotoxic molecules, such as IFN-γ, IL-6, perforin, granzyme B and FasL. These studies demonstrate a ubiquitous T-cell response to ChAdOx1 nCoV-19 and Ad26.COV2. S in HDs recruited prior to the SARS-CoV-2 pandemic, with T-cell stimulation also identified in vaccinated controls. This may be due to underlying T-cell cross-reactivity with prevalent human adenoviruses and further study will be needed to identify T-cell epitopes involved.

2.
Br J Dermatol ; 190(5): 729-739, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38288865

RESUMEN

BACKGROUND: Mutant BRAF targeted therapies remain a standard of care for the treatment of metastatic malignant melanoma (MM); however, high initial response rates are tempered by the persistence of residual MM cells that eventually lead to disease recurrence and mortality. As MM recurrence during targeted therapy can present with the simultaneous occurrence of multiple tumour nodules at the original body sites, we hypothesized the presence of an intrinsically resistant MM cell subpopulation. OBJECTIVES: To identify an MM cell subpopulation that is intrinsically resistant to targeted therapy and possibly responsible for MM recurrence. METHODS: Using melanoma cell lines, we defined culture conditions for the reproducible three-dimensional growth of melanospheres to investigate putative cancer stem cell populations. We undertook RNA sequencing and bioinformatic analysis to characterize cell populations between adherent and nonadherent culture, and cells expressing or not expressing CD20. Furthermore, we defined an in vitro assay to evaluate the killing of melanoma cancer stem cells as a therapeutic test using combination therapies targeting driver mutation and CD20. RESULTS: We described the culture conditions that promote MM cells to form melanospheres with a reproducible colony-forming efficiency rate of 0.3-1.3%. RNA sequencing of melanosphere vs. conventional MM cell cultures (n = 6), irrespective of the BRAF mutation status, showed that melanosphere formation was associated with growth and differentiation transcriptional signatures resembling MM tumours. Importantly, melanosphere formation also led to the emergence of a CD20+ MM cell subpopulation, similar to that observed in primary human MM tumours. CD20+ MM cells were resistant to BRAF inhibitor therapy and, consistent with this finding, demonstrated a Forkhead box protein M1 transcriptomic profile (n = 6). Combining BRAF inhibitor and anti-CD20 antibody treatment led to the additional killing of previously resistant CD20+  BRAF mutant MM cells. CONCLUSIONS: In patients with MM that harbour a CD20+ subpopulation, combined therapy with BRAF inhibitor and anti-CD20 antibody could potentially kill residual MM cells and prevent disease recurrence.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Recurrencia Local de Neoplasia , Inhibidores de Proteínas Quinasas/farmacología , Mutación , Línea Celular Tumoral
3.
Cancers (Basel) ; 15(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37627206

RESUMEN

Immune checkpoint inhibitors (ICIs) have revolutionized cancer care and shown remarkable efficacy clinically. This efficacy is, however, limited to subsets of patients with significant infiltration of lymphocytes into the tumour microenvironment. To extend their efficacy to patients who fail to respond or achieve durable responses, it is now becoming evident that complex combinations of immunomodulatory agents may be required to extend efficacy to patients with immunologically "cold" tumours. Oncolytic viruses (OVs) have the capacity to selectively replicate within and kill tumour cells, resulting in the induction of immunogenic cell death and the augmentation of anti-tumour immunity, and have emerged as a promising modality for combination therapy to overcome the limitations seen with ICIs. Pre-clinical and clinical data have demonstrated that OVs can increase immune cell infiltration into the tumour and induce anti-tumour immunity, thus changing a "cold" tumour microenvironment that is commonly associated with poor response to ICIs, to a "hot" microenvironment which can render patients more susceptible to ICIs. Here, we review the major viral vector platforms used in OV clinical trials, their success when used as a monotherapy and when combined with adjuvant ICIs, as well as pre-clinical studies looking at the effectiveness of encoding OVs to deliver ICIs locally to the tumour microenvironment through transgene expression.

4.
Viruses ; 15(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37243172

RESUMEN

Glioblastoma (GBM) is the most common and aggressive adult brain cancer with an average survival rate of around 15 months in patients receiving standard treatment. Oncolytic adenovirus expressing therapeutic transgenes represent a promising alternative treatment for GBM. Of the many human adenoviral serotypes described to date, adenovirus 5 (HAdV-C5) has been the most utilised clinically and experimentally. However, the use of Ad5 as an anti-cancer agent may be hampered by naturally high seroprevalence rates to HAdV-C5 coupled with the infection of healthy cells via native receptors. To explore whether alternative natural adenoviral tropisms are better suited to GBM therapeutics, we pseudotyped an HAdV-C5-based platform using the fibre knob protein from alternative serotypes. We demonstrate that the adenoviral entry receptor coxsackie, adenovirus receptor (CAR) and CD46 are highly expressed by both GBM and healthy brain tissue, whereas Desmoglein 2 (DSG2) is expressed at a low level in GBM. We demonstrate that adenoviral pseudotypes, engaging CAR, CD46 and DSG2, effectively transduce GBM cells. However, the presence of these receptors on non-transformed cells presents the possibility of off-target effects and therapeutic transgene expression in healthy cells. To enhance the specificity of transgene expression to GBM, we assessed the potential for tumour-specific promoters hTERT and survivin to drive reporter gene expression selectively in GBM cell lines. We demonstrate tight GBM-specific transgene expression using these constructs, indicating that the combination of pseudotyping and tumour-specific promoter approaches may enable the development of efficacious therapies better suited to GBM.


Asunto(s)
Infecciones por Adenoviridae , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Estudios Seroepidemiológicos , Línea Celular Tumoral , Receptores Virales/genética , Adenoviridae/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Vectores Genéticos/genética
5.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36074574

RESUMEN

The basis of immune evasion, a hallmark of cancer, can differ even when cancers arise from one cell type such as in the human skin keratinocyte carcinomas: basal and squamous cell carcinoma. Here we showed that the basal cell carcinoma tumor-initiating cell surface protein CD200, through ectodomain shedding, was responsible for the near absence of NK cells within the basal cell carcinoma tumor microenvironment. In situ, CD200 underwent ectodomain shedding by metalloproteinases MMP3 and MMP11, which released biologically active soluble CD200 into the basal cell carcinoma microenvironment. CD200 bound its cognate receptor on NK cells to suppress MAPK pathway signaling that in turn blocked indirect (IFN-γ release) and direct cell killing. In addition, reduced ERK phosphorylation relinquished negative regulation of PPARγ-regulated gene transcription and led to membrane accumulation of the Fas/FADD death receptor and its ligand, FasL, which resulted in activation-induced apoptosis. Blocking CD200 inhibition of MAPK or PPARγ signaling restored NK cell survival and tumor cell killing, with relevance to many cancer types. Our results thus uncover a paradigm for CD200 as a potentially novel and targetable NK cell-specific immune checkpoint, which is responsible for NK cell-associated poor outcomes in many cancers.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Humanos , Microambiente Tumoral , PPAR gamma , Células Asesinas Naturales , Receptor fas , Apoptosis , Carcinoma de Células Escamosas/genética
6.
Environ Sci Technol ; 54(16): 10078-10087, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32686935

RESUMEN

Fish have been highly exposed to radiation in freshwater systems after the Chernobyl Nuclear Power Plant (NPP) accident in 1986 and in freshwater and marine systems after the more recent Fukushima NPP accident in 2011. In the years after the accident, the radioactivity levels rapidly declined due to radioactive decay and environmental processes, but chronic lower dose exposures persisted. To gain insights into the long-term effects of environmental low dose radiation on fish ovaries development, a high-throughput transcriptomic approach including a de novo assembly was applied to different gonad phenotypes of female perch: developed gonads from reference lakes, developed/irradiated from medium contaminated lake, and both developed/irradiated and undeveloped from more highly contaminated lakes. This is the most comprehensive analysis to date of the gene responses in wildlife reproductive system to radiation. Some gene responses that were modulated in irradiated gonads were found to be involved in biological processes including cell differentiation and proliferation (ggnb2, mod5, rergl), cytoskeleton organization (k1C18, mtpn), gonad development (nell2, tcp4), lipid metabolism (ldah, at11b, nltp), reproduction (cyb5, cyp17A, ovos), DNA damage repair (wdhd1, rad51, hus1), and epigenetic mechanisms (dmap1). Identification of these genes provides a better understanding of the underlying molecular mechanisms underpinning the development of the gonad phenotypes of wild perch and how fish may respond to chronic exposure to radiation in their natural environment, though causal attribution of gene responses remains unclear in the undeveloped gonads.


Asunto(s)
Accidente Nuclear de Chernóbil , Accidente Nuclear de Fukushima , Percas , Animales , Femenino , Lagos , Ovario , Percas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...