Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029917

RESUMEN

Prokaryotic transcription factors can be repurposed into biosensors for the ligand-inducible control of gene expression, but the landscape of chemical ligands for which biosensors exist is extremely limited. To expand this landscape, we developed Ligify, a web application that leverages information in enzyme reaction databases to predict transcription factors that may be responsive to user-defined chemicals. Candidate transcription factors are then incorporated into automatically generated plasmid sequences that are designed to express GFP in response to the target chemical. Our benchmarking analyses demonstrated that Ligify correctly predicted 31/100 previously validated biosensors and highlighted strategies for further improvement. We then used Ligify to build a panel of genetic circuits that could induce a 47-fold, 5-fold, 9-fold, and 27-fold change in fluorescence in response to D-ribose, L-sorbose, isoeugenol, and 4-vinylphenol, respectively. Ligify should enhance the ability of researchers to quickly develop biosensors for an expanded range of chemicals and is publicly available at https://ligify.groov.bio.

2.
Commun Biol ; 7(1): 163, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336860

RESUMEN

Bioengineers increasingly rely on ligand-inducible transcription regulators for chemical-responsive control of gene expression, yet the number of regulators available is limited. Novel regulators can be mined from genomes, but an inadequate understanding of their DNA specificity complicates genetic design. Here we present Snowprint, a simple yet powerful bioinformatic tool for predicting regulator:operator interactions. Benchmarking results demonstrate that Snowprint predictions are significantly similar for >45% of experimentally validated regulator:operator pairs from organisms across nine phyla and for regulators that span five distinct structural families. We then use Snowprint to design promoters for 33 previously uncharacterized regulators sourced from diverse phylogenies, of which 28 are shown to influence gene expression and 24 produce a >20-fold dynamic range. A panel of the newly repurposed regulators are then screened for response to biomanufacturing-relevant compounds, yielding new sensors for a polyketide (olivetolic acid), terpene (geraniol), steroid (ursodiol), and alkaloid (tetrahydropapaverine) with induction ratios up to 10.7-fold. Snowprint represents a unique, protein-agnostic tool that greatly facilitates the discovery of ligand-inducible transcriptional regulators for bioengineering applications. A web-accessible version of Snowprint is available at https://snowprint.groov.bio .


Asunto(s)
Técnicas Biosensibles , Biología Computacional , Humanos , Ligandos , Regiones Promotoras Genéticas , ADN
3.
ACS Synth Biol ; 11(10): 3534-3537, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36178800

RESUMEN

Genetic biosensors are integral to synthetic biology. In particular, ligand-inducible prokaryotic transcription factors are frequently used in high-throughput screening, for dynamic feedback regulation, as multilayer logic gates, and in diagnostic applications. In order to provide a curated source that users can rely on for engineering applications, we have developed GroovDB (available at https://groov.bio), a Web-accessible database of ligand-inducible transcription factors that contains all information necessary to build chemically responsive genetic circuits, including biosensor sequence, ligand, and operator data. Ligand and DNA interaction data have been verified against the literature, while an automated data curation pipeline is used to programmatically fetch metadata, structural information, and references for every entry. A custom tool to visualize the natural genetic context of biosensor entries provides potential insights into alternative ligands and systems biology.


Asunto(s)
Técnicas Biosensibles , Factores de Transcripción , Factores de Transcripción/genética , Ligandos , Proteínas de Unión al ADN/genética , Biología Sintética , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA