Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 42(1): 110, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37131258

RESUMEN

BACKGROUND: Ufm1-specific ligase 1 (Ufl1) and Ufm1-binding protein 1 (Ufbp1), as putative targets of ubiquitin-fold modifier 1 (Ufm1), have been implicated in several pathogenesis-related signaling pathways. However, little is known about their functional roles in liver disease. METHODS: Hepatocyte-specific Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice were used to study their role in liver injury. Fatty liver disease and liver cancer were induced by high-fat diet (HFD) and diethylnitrosamine (DEN) administration, respectively. iTRAQ analysis was employed to screen for downstream targets affected by Ufbp1 deletion. Co-immunoprecipitation was used to determine the interactions between the Ufl1/Ufbp1 complex and the mTOR/GßL complex. RESULTS: Ufl1Δ/Δhep or Ufbp1Δ/Δhep mice exhibited hepatocyte apoptosis and mild steatosis at 2 months of age and hepatocellular ballooning, extensive fibrosis, and steatohepatitis at 6-8 months of age. More than 50% of Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice developed spontaneous hepatocellular carcinoma (HCC) by 14 months of age. Moreover, Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice were more susceptible to HFD-induced fatty liver and DEN-induced HCC. Mechanistically, the Ufl1/Ufbp1 complex directly interacts with the mTOR/GßL complex and attenuates mTORC1 activity. Ablation of Ufl1 or Ufbp1 in hepatocytes dissociates them from the mTOR/GßL complex and activates oncogenic mTOR signaling to drive HCC development. CONCLUSIONS: These findings reveal the potential role of Ufl1 and Ufbp1 as gatekeepers to prevent liver fibrosis and subsequent steatohepatitis and HCC development by inhibiting the mTOR pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Hepatocitos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Neurosci Biobehav Rev ; 140: 104794, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35902044

RESUMEN

Cell therapeutic approaches focusing on the regeneration of damaged tissue have been a popular topic among researchers in recent years. In particular, self-repair scarring from the central nervous system (CNS) can significantly complicate the treatment of an injured patient. In CNS regeneration schemes, either glial progenitor cells or reactive glial cells have key roles to play. In this review, the contribution and underlying mechanisms of these progenitor/reactive glial cells during CNS regeneration are discussed, as well as their role in CNS-related diseases.


Asunto(s)
Astrocitos , Enfermedades del Sistema Nervioso Central , Sistema Nervioso Central , Humanos , Regeneración Nerviosa , Neuroglía , Células Madre
3.
J Exp Clin Cancer Res ; 41(1): 43, 2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35093151

RESUMEN

BACKGROUND: Targeting mitochondrial oncoproteins presents a new concept in the development of effective cancer therapeutics. ATAD3A is a nuclear-encoded mitochondrial enzyme contributing to mitochondrial dynamics, cholesterol metabolism, and signal transduction. However, its impact and underlying regulatory mechanisms in cancers remain ill-defined. METHODS: We used head and neck squamous cell carcinoma (HNSCC) as a research platform and achieved gene depletion by lentiviral shRNA and CRISPR/Cas9. Molecular alterations were examined by RNA-sequencing, phospho-kinase profiling, Western blotting, RT-qPCR, immunohistochemistry, and immunoprecipitation. Cancer cell growth was assessed by MTT, colony formation, soft agar, and 3D cultures. The therapeutic efficacy in tumor development was evaluated in orthotopic tongue tumor NSG mice. RESULTS: ATAD3A is highly expressed in HNSCC tissues and cell lines. Loss of ATAD3A expression suppresses HNSCC cell growth and elicits tumor regression in orthotopic tumor-bearing mice, whereas gain of ATAD3A expression produces the opposite effects. From a mechanistic perspective, the tumor suppression induced by the overexpression of the Walker A dead mutant of ATAD3A (K358) produces a potent dominant-negative effect due to defective ATP-binding. Moreover, ATAD3A binds to ERK1/2 in the mitochondria of HNSCC cells in the presence of VDAC1, and this interaction is essential for the activation of mitochondrial ERK1/2 signaling. Most importantly, the ATAD3A-ERK1/2 signaling axis drives HNSCC development in a RAS-independent fashion and, thus, tumor suppression is more effectively achieved when ATAD3A knockout is combined with RAS inhibitor treatment. CONCLUSIONS: These findings highlight the novel function of ATAD3A in regulating mitochondrial ERK1/2 activation that favors HNSCC development. Combined targeting of ATAD3A and RAS signaling may potentiate anticancer activity for HNSCC therapeutics.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Ratones Endogámicos NOD , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
4.
ChemMedChem ; 17(2): e202100547, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34632703

RESUMEN

The discovery of novel analgesic agents with high potency, low toxicity and low addictive properties remain a priority. This study aims to identify the analgesic potential of quinoline derived α-trifluoromethylated alcohols (QTA) and their mechanism of action. We synthesized and characterized several compounds of QTAs and screened them for antiepileptic and analgesic activity using zebrafish larvae in high thorough-put behavior analyses system. Toxicity and behavioral screening of 9 compounds (C1-C9) identified four candidates (C2, C3, C7 and C9) with antiepileptic properties that induces specific and reversible reduction in photomotor activity. Importantly, compounds C2 and C3 relieved the thermal pain response in zebrafish larvae indicating analgesic property. Further, using novel in vivo CoroNa green assay, we show that compounds C2 and C3 block sodium channels and reduce inflammatory sodium signals released by peripheral nerve and tissue damage. Thus, we have identified novel QTA compounds with antiepileptic and analgesic properties which could alleviate neuropathic pain.


Asunto(s)
Analgésicos/farmacología , Anticonvulsivantes/farmacología , Metanol/análogos & derivados , Quinolinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Analgésicos/síntesis química , Analgésicos/química , Animales , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Metanol/síntesis química , Metanol/química , Metanol/farmacología , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/química , Bloqueadores de los Canales de Sodio/síntesis química , Bloqueadores de los Canales de Sodio/química , Relación Estructura-Actividad , Pez Cebra
5.
J Exp Clin Cancer Res ; 40(1): 393, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906193

RESUMEN

BACKGROUND: Alterations in metabolism are one of the emerging hallmarks of cancer cells and targeting dysregulated cancer metabolism provides a new approach to developing more selective therapeutics. However, insufficient blockade critical metabolic dependencies of cancer allows the development of metabolic bypasses, thus limiting therapeutic benefits. METHODS: A series of head and neck squamous cell carcinoma (HNSCC) cell lines and animal models were used to determine the efficacy of CPI-613 and CB-839 when given alone or in combination. Glutaminase 1 (GLS1) depletion was achieved by lentiviral shRNAs. Cell viability and apoptosis were determined in HNSCC cells cultured in 2D culture dish and SeedEZ™ 3D scaffold. Molecular alterations were examined by Western blotting and immunohistochemistry. Metabolic changes were assessed by glucose uptake, lactate production, glutathione levels, and oxygen consumption rate. RESULTS: We show here that HNSCC cells display strong addiction to glutamine. CPI-613, a novel lipoate analog, redirects cellular activity towards tumor-promoting glutaminolysis, leading to low anticancer efficacy in HNSCC cells. Mechanistically, CPI-613 inhibits the tricarboxylic acid cycle by blocking the enzyme activities of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, which upregulates GLS1 and eventually promotes the compensatory role of glutaminolysis in cancer cell survival. Most importantly, the addition of a GLS1 inhibitor CB-839 to CPI-613 treatment abrogates the metabolic dependency of HNSCC cells on glutamine, achieving a synergistic anticancer effect in glutamine-addicted HNSCC. CONCLUSIONS: These findings uncover the critical role of GLS1-mediated glutaminolysis in CPI-613 treatment and suggest that the CB-839 and CPI-613 combination may potentiate synergistic anticancer activity for HNSCC therapeutic gain.


Asunto(s)
Caprilatos/metabolismo , Glutamina/metabolismo , Neoplasias de Cabeza y Cuello/genética , Sulfuros/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Neoplasias de Cabeza y Cuello/patología , Humanos , Ratones
6.
Cancers (Basel) ; 13(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830956

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) represents an aggressive and heterogenous group of cancers whose pathologies remain largely unresolved. Despite recent advances in HNSCC therapeutic strategies, the overall survival of HNSCC patients remains poor and continues to prompt efforts to develop more effective therapies. Exosomes are a subtype of extracellular vesicles secreted by a variety of cells that have begun to spark significant interest in their roles in cancer. As membranous vesicles, spanning from 30-150 nm in diameter, exosomes mediate the transport of various molecules, such as proteins, nucleic acids, and lipids, intercellularly throughout the body. In doing so, exosomes not only act to deliver materials to cancer cells but also as signals that can confer their progression. Accumulating evidence shows the direct correlation between exosomes and the aggressiveness of HNSCC. However, more research is warranted in this field to further our understanding. In this review, we attempt to highlight the tumor-supporting roles and therapeutic potential of exosomes in HNSCC. We introduce first the biogenesis and component features of exosomes, followed by their involvement in HNSCC proliferation and metastasis. We then move on to discuss HNSCC-derived exosomes' influence on the tumor microenvironment and their function in tumor drug resistance. Finally, we explore the promising potential of exosomes as HNSCC biomarkers and therapeutic targets and drug carriers for HNSCC treatments.

7.
J Exp Clin Cancer Res ; 40(1): 274, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465361

RESUMEN

BACKGROUND: Metastasis is most often the root cause of cancer-related death. Human short stature homeobox 2 (SHOX2), a homeodomain transcription factor, is a novel inducer of epithelial-to-mesenchymal transition in breast cancer cells, though its exact role and underlying mechanisms in metastasis are not well understood. METHODS: TCGA analysis was performed to identify the clinical relevance of SHOX2 in breast cancer. Gene depletion was achieved by short hairpin RNA and small interfering RNA. Molecular regulations and alterations were assessed by Western blotting, immunoprecipitation, immunohistochemistry, qRT-PCR, chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR), and ChIP/re-ChIP. The impact of SHOX2 signaling on tumor growth and metastasis was evaluated in orthotopic breast tumor mice. RESULTS: The expression level of SHOX2 is strongly associated with poor distant metastasis-free survival in breast cancer patients and inactivation of SHOX2 suppresses breast tumor growth and metastasis in mice. In breast cancer cells, SHOX2 directly activates Wiskott-Aldridge syndrome protein family member 3 (WASF3), a metastasis-promoting gene, at the transcriptional level, leading to a significant increase in metastatic potential. Mechanistically, SHOX2 activates signal transducer and activator of transcription 3 (STAT3) and recruits it to the WASF3 promoter, where STAT3 cooperates with SHOX2 to form a functional immunocomplex to promote WASF3 transcriptional activity in breast cancer cells. WASF3 knockdown abrogates SHOX2-induced metastasis, but not SHOX2-dependent tumorigenesis. CONCLUSIONS: These findings provide a critical link between the SHOX2-STAT3-WASF3 signaling axis and metastasis and suggest that the targeting of this signaling node may represent a valuable alternative strategy for combating breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas de Homeodominio/metabolismo , Metástasis de la Neoplasia , Factor de Transcripción STAT3/metabolismo , Activación Transcripcional , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal
8.
J Exp Clin Cancer Res ; 40(1): 264, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429144

RESUMEN

Tumor resistance to apoptosis and the immunosuppressive tumor microenvironment are two major contributors to poor therapeutic responses during cancer intervention. Pyroptosis, a lytic and inflammatory programmed cell death pathway distinct from apoptosis, has subsequently sparked notable interest among cancer researchers for its potential to be clinically harnessed and to address these problems. Recent evidence indicates that pyroptosis induction in tumor cells leads to a robust inflammatory response and marked tumor regression. Underlying its antitumor effect, pyroptosis is mediated by pore-forming gasdermin proteins that facilitate immune cell activation and infiltration through their release of pro-inflammatory cytokines and immunogenic material following cell rupture. Considering its inflammatory nature, however, aberrant pyroptosis may also be implicated in the formation of a tumor supportive microenvironment, as evidenced by the upregulation of gasdermin proteins in certain cancers. In this review, the molecular pathways leading to pyroptosis are introduced, followed by an overview of the seemingly entangled links between pyroptosis and cancer. We describe what is known regarding the impact of pyroptosis on anticancer immunity and give insight into the potential of harnessing pyroptosis as a tool and applying it to novel or existing anticancer strategies.


Asunto(s)
Susceptibilidad a Enfermedades , Inmunidad , Neoplasias/etiología , Neoplasias/metabolismo , Piroptosis/inmunología , Animales , Biomarcadores , Terapia Combinada , Manejo de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , Neoplasias/terapia , Piroptosis/genética , Transducción de Señal , Resultado del Tratamiento
9.
Biomed Pharmacother ; 140: 111776, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34062411

RESUMEN

When tumor cells are killed by targeted therapy, radiotherapy, or chemotherapy, they trigger their primary tumor by releasing pro-inflammatory cytokines. Microenvironmental interactions can also promote tumor heterogeneity and development. In this line, several immune cells within the tumor microenvironment, including macrophages, dendritic cells, regulatory T-cells, and CD8+ and CD4+ T cells, are involved in the clearance of apoptotic tumor cells through a process called efferocytosis. Although the efficiency of apoptotic tumor cell efferocytosis is positive under physiological conditions, there are controversies regarding its usefulness in treatment-induced apoptotic tumor cells (ATCs). Efferocytosis can show the limitation of cytotoxic treatments, such as chemotherapy and radiotherapy. Since cytotoxic treatments lead to extensive cell mortality, efferocytosis, and macrophage polarization toward an M2 phenotype, the immune response may get involved in tumor recurrence and metastasis. Tumor cells can use the anti-inflammatory effect of apoptotic tumor cell efferocytosis to induce an immunosuppressive condition that is tumor-tolerant. Since M2 polarization and efferocytosis are tumor-promoting processes, the receptors on macrophages act as potential targets for cancer therapy. Moreover, researchers have shown that efferocytosis-related molecules/pathways are potential targets for cancer therapy. These include phosphatidylserine and calreticulin, Tyro3, Axl, and Mer tyrosine kinase (MerTK), receptors of tyrosine kinase, indoleamine-2,3-dioxygenase 1, annexin V, CD47, TGF-ß, IL-10, and macrophage phenotype switch are combined with conventional therapy, which can be more effective in cancer treatment. Thus, we set out to investigate the advantages and disadvantages of efferocytosis in treatment-induced apoptotic tumor cells.


Asunto(s)
Apoptosis , Endocitosis , Neoplasias , Animales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología
10.
Cells ; 10(2)2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668576

RESUMEN

Epidemiological and clinical studies over the past two decades have provided strong evidence that genetic elements interacting with environmental components can individually and collectively influence one's susceptibility to cancer. In addition to tumorigenic properties, numerous environmental factors, such as nutrition, chemical carcinogens, and tobacco/alcohol consumption, possess pro-invasive and pro-metastatic cancer features. In contrast to traditional cancer treatment, modern therapeutics not only take into account an individual's genetic makeup but also consider gene-environment interactions. The current review sharpens the focus by elaborating on the impact that environmental factors have on the pathogenesis and progression of head and neck cancer and the underlying molecular mechanisms involved. Recent advances, challenges, and future perspectives in this area of research are also discussed. Inhibiting key environmental drivers of tumor progression should yield survival benefits for patients at any stage of head and neck cancer.


Asunto(s)
Progresión de la Enfermedad , Ambiente , Neoplasias de Cabeza y Cuello/epidemiología , Neoplasias de Cabeza y Cuello/patología , Humanos , Microbiota , Factores de Riesgo , Fumar/efectos adversos
11.
J Exp Clin Cancer Res ; 40(1): 93, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691750

RESUMEN

BACKGROUND: There is no consensus about the effective dosages of melatonin in cancer management, thus, it is imperative to fully understand the dose-dependent responsiveness of cancer cells to melatonin and the underlying mechanisms. METHODS: Head and neck squamous cell carcinoma (HNSCC) cells with or without melatonin treatment were used as a research platform. Gene depletion was achieved by short hairpin RNA, small interfering RNA, and CRISPR/Cas9. Molecular changes and regulations were assessed by Western blotting, quantitative RT-PCR (qRT-PCR), immunohistochemistry, and chromatin Immunoprecipitation coupled with qPCR (ChIP-qPCR). The therapeutic efficacy of FGF19/FGFR4 inhibition in melatonin-mediated tumor growth and metastasis was evaluated in orthotopic tongue tumor mice. RESULTS: The effect of melatonin on controlling cell motility and metastasis varies in HNSCC cells, which is dose-dependent. Mechanistically, high-dose melatonin facilitates the upregulation of FGF19 expression through activating endoplasmic stress (ER)-associated protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor 4 (ATF4) pathway, which in turn promotes FGFR4-Vimentin invasive signaling and attenuates the role of melatonin in repressing metastasis. Intriguingly, following long-term exposure to high-dose melatonin, epithelial HNSCC cells revert the process towards mesenchymal transition and turn more aggressive, which is enabled by FGF19/FGFR4 upregulation and alleviated by genetic depletion of the FGF19 and FGFR4 genes or the treatment of FGFR4 inhibitor H3B-6527. CONCLUSIONS: Our study gains novel mechanistic insights into melatonin-mediated modulation of FGF19/FGFR4 signaling in HNSCC, demonstrating that activating this molecular node confines the role of melatonin in suppressing metastasis and even triggers the switch of its function from anti-metastasis to metastasis promotion. The blockade of FGF19/FGFR4 signaling would have great potential in improving the efficacy of melatonin supplements in cancer treatment.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Melatonina/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Animales , Humanos , Ratones , Metástasis de la Neoplasia , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
12.
Crit Rev Oncol Hematol ; 158: 103210, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385514

RESUMEN

Characterized by remarkable levels of aggression and malignancy, BC remains one of the leading causes of death in females world wide. Accordingly, significant efforts have been made to develop early diagnostic tools, increase treatment efficacy, and improve patient prognosis. Hopefully, many of the molecular mechanisms underlying BC have been detected and show promising targeting potential. In particular, short and long non-coding RNAs (ncRNAs) are a class of endogenous BC controllers and include a number of different species including microRNAs, Piwi-interacting RNAs, small nucleolar RNA, short interfering RNAs, and tRNA-derivatives. In this review, we discuss the tumor suppressing roles of ncRNAs in the context of BC, and the mechanisms by which ncRNAs target tumor hallmarks, including apoptosis, proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, and cell cycle progression, in addition to their diagnostic and prognostic significance in cancer treatment.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Interferente Pequeño
13.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467681

RESUMEN

Increasing evidence indicates that cancer metastasis is regulated by specific genetic pathways independent of those controlling tumorigenesis and cancer growth. WASF3, a Wiskott-Aldrich syndrome protein family member, appears to play a major role not only in the regulation of actin cytoskeleton dynamics but also in cancer cell invasion/metastasis. Recent studies have highlighted that WASF3 is a master regulator and acts as a pivotal scaffolding protein, bringing the various components of metastatic signaling complexes together both spatially and temporally. Herein, targeting WASF3 at the levels of transcription, protein stability, and phosphorylation holds great promise for metastasis suppression, regardless of the diverse genetic backgrounds associated with tumor development. This review focuses on the critical and distinct contributions of WASF3 in the regulation of signal pathways promoting cancer cell invasion and metastasis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Neoplasias/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Movimiento Celular , Chaperón BiP del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Janus Quinasa 2/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , MicroARNs/metabolismo , Proteínas Mitocondriales/metabolismo , Invasividad Neoplásica/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
14.
Int J Mol Sci ; 21(21)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113782

RESUMEN

Spanning from the mitochondria's outer surface to the inner membrane, the nuclear-encoded protein ATAD3A maintains vital roles in regulating mitochondrial dynamics, homeostasis, metabolism, and interactions with the endoplasmic reticulum. Recently, elevated levels of ATAD3A have been reported in several types of cancer and to be tightly correlated with cancer development and progression, including increased cancer cell potential of proliferation, metastasis, and resistance to chemotherapy and radiotherapy. In the current review, we reveal ATAD3A as the link between mitochondrial functions and cancer biology and the accumulating evidence presenting ATAD3A as an attractive target for the development of novel cancer therapy to inhibit aberrant cancer metabolism and progression.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neoplasias/metabolismo , Animales , Humanos , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Modelos Biológicos , Transducción de Señal
15.
Front Mol Biosci ; 7: 611847, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33521055

RESUMEN

The tumor microenvironment (TME) is a rich and active arena that is strategically evolved overtime by tumors to promote their survival and dissemination. Over the years, attention has been focused to characterize and identify the tumor-supporting roles and subsequent targeting potentials of TME components. Nevertheless, recapitulating the human TME has proved inherently challenging, leaving much to be explored. In this regard, in vivo model systems like zebrafish, with its optical clarity, ease of genetic manipulation, and high engraftment, have proven to be indispensable for TME modeling and investigation. In this review, we discuss the recent ways by which zebrafish models have lent their utility to provide new insights into the various cellular and molecular mechanisms driving TME dynamics and tumor support. Specifically, we report on innate immune cell interactions, cytokine signaling, metastatic plasticity, and other processes within the metastatic cascade. In addition, we reflect on the arrival of adult zebrafish models and the potential of patient-derived xenografts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...