Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
ACS Med Chem Lett ; 11(10): 2002-2009, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33062185

RESUMEN

The orexin system consists of two neuropeptides (orexin-A and orexin-B) that exert their mode of action on two receptors (orexin-1 and orexin-2). While the role of the orexin-2 receptor is established as an important modulator of sleep wake states, the role of the orexin-1 receptor is believed to play a role in addiction, panic, or anxiety. In this manuscript, we describe the optimization of a nonselective substituted azabicyclo[2.2.1]heptane dual orexin receptor antagonist (DORA) into orally bioavailable, brain penetrating, selective orexin-1 receptor (OX1R) antagonists. This resulted in the discovery of our first candidate for clinical development, JNJ-54717793.

2.
Front Genet ; 10: 396, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114610

RESUMEN

Transcriptomics technologies such as next-generation sequencing and microarray platforms provide exciting opportunities for improving diagnosis and treatment of complex diseases. Transcriptomics studies often share similar hypotheses, but are carried out on different platforms, in different conditions, and with different analysis approaches. These factors, in addition to small sample sizes, can result in a lack of reproducibility. A clear understanding and unified picture of many complex diseases are still elusive, highlighting an urgent need to effectively integrate multiple transcriptomic studies for disease signatures. We have integrated more than 3,000 high-quality transcriptomic datasets in oncology, immunology, neuroscience, cardiovascular and metabolic disease, and from both public and internal sources (DiseaseLand database). We established a systematic data integration and meta-analysis approach, which can be applied in multiple disease areas to create a unified picture of the disease signature and prioritize drug targets, pathways, and compounds. In this bipolar case study, we provided an illustrative example using our approach to combine a total of 30 genome-wide gene expression studies using postmortem human brain samples. First, the studies were integrated by extracting raw FASTQ or CEL files, then undergoing the same procedures for preprocessing, normalization, and statistical inference. Second, both p-value and effect size based meta-analysis algorithms were used to identify a total of 204 differentially expressed (DE) genes (FDR < 0.05) genes in the prefrontal cortex. Among these were BDNF, VGF, WFS1, DUSP6, CRHBP, MAOA, and RELN, which have previously been implicated in bipolar disorder. Finally, pathway enrichment analysis revealed a role for GPCR, MAPK, immune, and Reelin pathways. Compound profiling analysis revealed MAPK and other inhibitors may modulate the DE genes. The ability to robustly combine and synthesize the information from multiple studies enables a more powerful understanding of this complex disease.

3.
Eur J Pharmacol ; 853: 299-307, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30965058

RESUMEN

Transient receptor potential melastatin type 2 (TRPM2) is a cation channel activated by free intracellular ADP-ribose and reactive oxygen species. TRPM2 signaling has been linked to the pathophysiology of CNS disorders such as neuropathic pain, bipolar disorder and Alzheimer's disease. In this manuscript, we describe the discovery of JNJ-28583113, a potent brain penetrant TRPM2 antagonist. Ca2+ flux assays in cells overexpressing TRPM2 and electrophysiological recordings were used to test the pharmacology of JNJ-28583113. JNJ-28583113 was assayed in vitro on GSK-3 phosphorylation levels, cell death, cytokine release in microglia and unbiased morphological phenotypic analysis. Finally, we dosed animals to evaluate its pharmacokinetic properties. Our results showed that JNJ-28583113 is a potent (126 ±â€¯0.5 nM) TRPM2 antagonist. Blocking TRPM2 caused phosphorylation of GSK3α and ß subunits. JNJ-28583113 also protected cells from oxidative stress induced cell death as well as morphological changes induced by non-cytotoxic concentrations of H2O2. In addition, inhibiting TRPM2 blunted cytokine release in response to pro-inflammatory stimuli in microglia. Lastly, we showed that JNJ-28583113 was brain penetrant but not suitable for systemic dosing as it was rapidly metabolized in vivo. While the in-vitro pharmacology of JNJ-28583113 is the best in class, its in-vivo properties would need optimization to assist in further probing key roles of TRPM2 in CNS pathophysiology.


Asunto(s)
Descubrimiento de Drogas , Pirazoles/farmacología , Canales Catiónicos TRPM/antagonistas & inhibidores , Animales , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratas
4.
Front Neurosci ; 13: 281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30971885

RESUMEN

GPR139, a Gq-coupled receptor that is activated by the essential amino acids L-tryptophan and L-phenylalanine, is predominantly expressed in the brain and pituitary. The physiological function of GPR139 remains elusive despite the availability of pharmacological tool agonist compounds and knock-out mice. Whole tissue RNA sequencing data from human, mouse and rat tissues revealed that GPR139 and the dopamine D2 receptor (DRD2) exhibited some similarities in their distribution patterns in the brain and pituitary gland. To determine if there was true co-expression of these two receptors, we applied double in situ hybridization in mouse tissues using the RNAscope® technique. GPR139 and DRD2 mRNA co-expressed in a majority of same cells within part of the dopaminergic mesolimbic pathways (ventral tegmental area and olfactory tubercle), the nigrostriatal pathway (compact part of substantia nigra and caudate putamen), and also the tuberoinfundibular pathway (arcuate hypothalamic nucleus and anterior lobe of pituitary). Both receptors mRNA also co-express in the same cells of the brain regions involved in responses to negative stimulus and stress, such as lateral habenula, lateral septum, interpeduncular nucleus, and medial raphe nuclei. GPR139 mRNA expression was detected in the dentate gyrus and the pyramidal cell layer of the hippocampus as well as the paraventricular hypothalamic nucleus. The functional interaction between GPR139 and DRD2 was studied in vitro using a calcium mobilization assay in cells co-transfected with both receptors from several species (human, rat, and mouse). The dopamine DRD2 agonist did not stimulate calcium response in cells expressing DRD2 alone consistent with the Gi signaling transduction pathway of this receptor. In cells co-transfected with DRD2 and GPR139 the DRD2 agonist was able to stimulate calcium response and its effect was blocked by either a DRD2 or a GPR139 antagonist supporting an in vitro interaction between GPR139 and DRD2. Taken together, these data showed that GPR139 and DRD2 are in position to functionally interact in native tissue.

6.
ACS Med Chem Lett ; 10(3): 267-272, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30891124

RESUMEN

This report discloses the discovery and characterization of imidazo[1,2-a]pyrazines and pyrazolo[1,5-c]pyrimidines as selective negative modulators of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) associated with transmembrane AMPAR regulatory protein γ-8. Imidazopyrazine 5 was initially identified as a promising γ-8 selective high-throughput screening hit, and subsequent structure-activity relationship optimization yielded subnanomolar, brain penetrant leads. Replacement of the imidazopyrazine core with an isosteric pyrazolopyrimidine scaffold improved microsomal stability and efflux liabilities to provide 26, JNJ-61432059. Following oral administration, 26 exhibited time- and dose-dependent AMPAR/γ-8 receptor occupancy in mouse hippocampus, which resulted in robust seizure protection in corneal kindling and pentylenetetrazole (PTZ) anticonvulsant models.

7.
Pharmacol Res Perspect ; 7(1): e00466, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30774960

RESUMEN

GPR139 is a Gq-coupled receptor activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe). We carried out mutagenesis studies of the human GPR139 receptor to identify the critical structural motifs required for GPR139 activation. We applied site-directed and high throughput random mutagenesis approaches using a double addition normalization strategy to identify novel GPR139 sequences coding receptors that have altered sensitivity to endogenous ligands. This approach resulted in GPR139 clones with gain-of-function, reduction-of-function or loss-of-function mutations. The agonist pharmacology of these mutant receptors was characterized and compared to wild-type receptor using calcium mobilization, radioligand binding, and protein expression assays. The structure-activity data were incorporated into a homology model which highlights that many of the gain-of-function mutations are either in or immediately adjacent to the purported orthosteric ligand binding site, whereas the loss-of-function mutations were largely in the intracellular G-protein binding area or were disrupters of the helix integrity. There were also some reduction-of-function mutations in the orthosteric ligand binding site. These findings may not only facilitate the rational design of novel agonists and antagonists of GPR139, but also may guide the design of transgenic animal models to study the physiological function of GPR139.


Asunto(s)
Mutación con Ganancia de Función , Mutación con Pérdida de Función , Proteínas del Tejido Nervioso/genética , Receptores Acoplados a Proteínas G/genética , Sitios de Unión , Calcio/metabolismo , Diseño de Fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ligandos , Mutagénesis , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/agonistas , Receptores Acoplados a Proteínas G/agonistas
8.
ACS Med Chem Lett ; 9(8): 821-826, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30128074

RESUMEN

Glutamate mediates fast excitatory neurotransmission via ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The trafficking and gating properties of AMPA receptors (AMPARs) can be amplified by transmembrane AMPAR regulatory proteins (TARPs), which are often expressed in localized brain regions. Herein, we describe the discovery, lead optimization, and preclinical characterization of 5-arylbenzimidazolone and oxindole-based negative modulators of AMPARs associated with TARP γ-8, the primary TARP found in hippocampus. High-throughput screen lead 4 was optimized for potency and brain penetration to provide benzimidazolone 3, JNJ-55511118.1 Replacement of the benzimidazolone core in 3 with an oxindole mitigated reactive metabolite formation and led to the identification of 18 (GluA1/γ-8 pIC50 = 9.7). Following oral dosing in rats, 18 demonstrated robust target engagement in hippocampus as assessed by ex vivo autoradiography (ED50 = 0.6 mg/kg, plasma EC50 = 9 ng/mL).

9.
Neuropsychopharmacology ; 43(13): 2586-2596, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30026598

RESUMEN

Emerging data continues to point towards a relationship between neuroinflammation and neuropsychiatric disorders. ATP-induced activation of P2X7 results in IL-1ß release causing neuroinflammation and microglial activation. This study describes the in-vitro and in-vivo neuropharmacology of a novel brain-penetrant P2X7 antagonist, JNJ-55308942, currently in clinical development. JNJ-55308942 is a high-affinity, selective, brain-penetrant (brain/plasma of 1) P2X7 functional antagonist. In human blood and in mouse blood and microglia, JNJ-55308942 attenuated IL-1ß release in a potent and concentration-dependent manner. After oral dosing, the compound exhibited both dose and concentration-dependent occupancy of rat brain P2X7 with an ED50 of 0.07 mg/kg. The P2X7 antagonist (3 mg/kg, oral) blocked Bz-ATP-induced brain IL-1ß release in conscious rats, demonstrating functional effects of target engagement in the brain. JNJ-55308942 (30 mg/kg, oral) attenuated LPS-induced microglial activation in mice, assessed at day 2 after a single systemic LPS injection (0.8 mg/kg, i.p.), suggesting a role for P2X7 in microglial activation. In a model of BCG-induced depression, JNJ-55308942 dosed orally (30 mg/kg), reversed the BCG-induced deficits of sucrose preference and social interaction, indicating for the first time a role of P2X7 in the BCG model of depression, probably due to the neuroinflammatory component induced by BCG inoculation. Finally, in a rat model of chronic stress induced sucrose intake deficit, JNJ-55308942 reversed the deficit with concurrent high P2X7 brain occupancy as measured by autoradiography. This body of data demonstrates that JNJ-55308942 is a potent P2X7 antagonist, engages the target in brain, modulates IL-1ß release and microglial activation leading to efficacy in two models of anhedonia in rodents.


Asunto(s)
Anhedonia/efectos de los fármacos , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Mediadores de Inflamación/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Receptores Purinérgicos P2X7/fisiología , Anhedonia/fisiología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Antagonistas del Receptor Purinérgico P2X/química , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Piridinas/química , Piridinas/uso terapéutico , Pirimidinas/química , Pirimidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Ratas Wistar
10.
ACS Med Chem Lett ; 9(5): 398-399, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29795747

RESUMEN

Call for papers! ACS Medicinal Chemistry Letters is now accepting manuscript submissions for a special issue entitled "Allosteric Modulation of Ionotropic Glutamate Receptors". This special issue is a cross-thematic issue with Journal of Medicinal Chemistry and ACS Chemical Neuroscience. The ACS Medicinal Chemistry Letters special issue is scheduled for publication in early 2019.

11.
J Med Chem ; 60(11): 4559-4572, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28493698

RESUMEN

The synthesis and preclinical characterization of novel 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are potent and selective brain penetrant P2X7 antagonists are described. Optimization efforts based on previously disclosed unsubstituted 6,7-dihydro-4H-triazolo[4,5-c]pyridines, methyl substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrazines, and several other series lead to the identification of a series of 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are selective P2X7 antagonists with potency at the rodent and human P2X7 ion channels. These novel P2X7 antagonists have suitable physicochemical properties, and several analogs have an excellent pharmacokinetic profile, good partitioning into the CNS and show robust in vivo target engagement after oral dosing. Improvements in metabolic stability led to the identification of JNJ-54175446 (14) as a candidate for clinical development. The drug discovery efforts and strategies that resulted in the identification of the clinical candidate are described herein.


Asunto(s)
Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Receptores Purinérgicos P2X7/efectos de los fármacos , Animales , Disponibilidad Biológica , Humanos , Antagonistas del Receptor Purinérgico P2X/farmacocinética
12.
Front Behav Neurosci ; 11: 83, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28533747

RESUMEN

Orexins peptides exert a prominent role in arousal-related processes including stress responding, by activating orexin-1 (OX1R) and orexin-2 (OX2R) receptors located widely throughout the brain. Stress or orexin administration stimulates hyperarousal, adrenocorticotropic hormone (ACTH) and corticosterone release, and selective OX1R blockade can attenuate several stress-induced behavioral and cardiovascular responses but not the hypothalamic-pituitary-adrenal (HPA) axis activation. As opposed to OX1R, OX2R are preferentially expressed in the paraventricular hypothalamic nucleus which is involved in the HPA axis regulation. In the present study, we investigated the effects of a psychological stress elicited by cage exchange (CE) on ACTH release in two murine models (genetic and pharmacological) of selective OX2R inhibition. CE-induced stress produced a significant increase in ACTH serum levels. Mice lacking the OX2R exhibited a blunted stress response. Stress-induced ACTH release was absent in mice pre-treated with the selective OX2R antagonist JNJ-42847922 (30 mg/kg po), whereas pre-treatment with the dual OX1/2R antagonist SB-649868 (30 mg/kg po) only partially attenuated the increase of ACTH. To assess whether the intrinsic and distinct sleep-promoting properties of each antagonist could account for the differential stress response, a separate group of mice implanted with electrodes for standard sleep recording were orally dosed with JNJ-42847922 or SB-649868 during the light phase. While both compounds reduced the latency to non-rapid eye movement (NREM) sleep without affecting its duration, a prevalent REM-sleep promoting effect was observed only in mice treated with the dual OX1/2R antagonist. These data indicate that in a psychological stress model, genetic or pharmacological inhibition of OX2R markedly attenuated stress-induced ACTH secretion, as a separately mediated effect from the NREM sleep induction of OX2R antagonism.

13.
J Med Chem ; 59(18): 8535-48, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27548392

RESUMEN

The synthesis and SAR of a series of 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridine P2X7 antagonists are described. Addressing P2X7 affinity and liver microsomal stability issues encountered with this template afforded methyl substituted 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridines ultimately leading to the identification of 1 (JNJ 54166060). 1 is a potent P2X7 antagonist with an ED50 = 2.3 mg/kg in rats, high oral bioavailability and low-moderate clearance in preclinical species, acceptable safety margins in rats, and a predicted human dose of 120 mg of QD. Additionally, 1 possesses a unique CYP profile and was found to be a regioselective inhibitor of midazolam CYP3A metabolism.


Asunto(s)
Antagonistas del Receptor Purinérgico P2X/química , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/química , Piridinas/farmacología , Receptores Purinérgicos P2X7/metabolismo , Administración Oral , Animales , Perros , Halogenación , Haplorrinos , Humanos , Imidazoles/administración & dosificación , Imidazoles/química , Imidazoles/farmacocinética , Imidazoles/farmacología , Ratones , Modelos Moleculares , Antagonistas del Receptor Purinérgico P2X/administración & dosificación , Antagonistas del Receptor Purinérgico P2X/farmacocinética , Piridinas/administración & dosificación , Piridinas/farmacocinética , Ratas
15.
J Pharmacol Exp Ther ; 357(2): 394-414, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26989142

RESUMEN

Members of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) subtype of ionotropic glutamate receptors mediate the majority of fast synaptic transmission within the mammalian brain and spinal cord, representing attractive targets for therapeutic intervention. Here, we describe novel AMPA receptor modulators that require the presence of the accessory protein CACNG8, also known as transmembrane AMPA receptor regulatory protein γ8 (TARP-γ8). Using calcium flux, radioligand binding, and electrophysiological assays of wild-type and mutant forms of TARP-γ8, we demonstrate that these compounds possess a novel mechanism of action consistent with a partial disruption of the interaction between the TARP and the pore-forming subunit of the channel. One of the molecules, 5-[2-chloro-6-(trifluoromethoxy)phenyl]-1,3-dihydrobenzimidazol-2-one (JNJ-55511118), had excellent pharmacokinetic properties and achieved high receptor occupancy following oral administration. This molecule showed strong, dose-dependent inhibition of neurotransmission within the hippocampus, and a strong anticonvulsant effect. At high levels of receptor occupancy in rodent in vivo models, JNJ-55511118 showed a strong reduction in certain bands on electroencephalogram, transient hyperlocomotion, no motor impairment on rotarod, and a mild impairment in learning and memory. JNJ-55511118 is a novel tool for reversible AMPA receptor inhibition, particularly within the hippocampus, with potential therapeutic utility as an anticonvulsant or neuroprotectant. The existence of a molecule with this mechanism of action demonstrates the possibility of pharmacological targeting of accessory proteins, increasing the potential number of druggable targets.


Asunto(s)
Bencimidazoles/uso terapéutico , Canales de Calcio/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Receptores AMPA/efectos de los fármacos , Animales , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Diseño de Fármacos , Electroencefalografía/efectos de los fármacos , Células HEK293 , Humanos , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Mutación/genética , Neuronas/efectos de los fármacos , Equilibrio Postural/efectos de los fármacos , Ratas Sprague-Dawley , Receptores AMPA/genética
16.
ACS Chem Neurosci ; 7(4): 498-504, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26754558

RESUMEN

We describe the synthesis of a novel class of brain penetrating P2X7 antagonists with high potency at both the rat and human P2X7 receptors. Disclosed herein are druglike molecules with demonstrated target engagement of the rat P2X7 receptors after an oral dose. Specifically, compound 20 occupied the P2X7 receptors >80% over the 6 h time course as measured by an ex vivo radioligand binding experiment. In a dose-response assay, this molecule has a plasma EC50 of 8 ng/mL. Overall, 20 has suitable druglike properties and pharmacokinetics in rat and dog. This molecule and others disclosed herein will serve as additional tools to elucidate the role of the P2X7 receptor in neuropsychiatric disorders.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Antagonistas del Receptor Purinérgico P2X/química , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/metabolismo , Animales , Citocinas/metabolismo , Dipéptidos/química , Dipéptidos/farmacología , Perros , Relación Dosis-Respuesta a Droga , Guanidinas/química , Guanidinas/farmacología , Humanos , Unión Proteica/efectos de los fármacos , Quinolinas/química , Quinolinas/farmacología , Ratas , Receptores Purinérgicos P2X7/genética
17.
Psychopharmacology (Berl) ; 233(9): 1623-36, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26803500

RESUMEN

Mood disorders, despite the widespread availability of monoamine-based antidepressant treatments, are associated with persistently high rates of disability, together with elevated rates of mortality due to suicide, cardiovascular disease, and other causes. The development of more effective treatments has been hindered by the lack of knowledge about the etiology and pathogenesis of mood disorders. An emerging area of science that promises novel pathways to antidepressant and mood stabilizing therapies surrounds evidence that immune cells and their signaling play a major role in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD). Here, we review evidence that the release of neuroactive cytokines, particularly interleukins such as IL-1ß, IL-6, and TNF-α, is altered in these disorders and discuss mechanisms such as the ATP-gated ion channel P2X7, through which cytokine signaling can influence neuro-glial interactions. Brain P2X7, an emerging target and antagonism of P2X7 holds promise as a novel mechanism for targeting treatment-resistant depression. We further discuss the role of microglia and astroglia in central neuroinflammation and their interaction with the peripheral immune system We present extant clinical evidence that bolsters the role of neuroinflammation and neuroactive cytokines in mood disorders. To that end, the role of clinical imaging by probing neuroinflammatory markers is also discussed briefly. Finally, we present data using preclinical neuroinflammation models that produce depression-like behaviors in experimental animals to identify neuroinflammatory mechanisms which may aid in novel neuroimmune target identification for the development of exciting pharmacological interventions in mood disorders.


Asunto(s)
Inflamación/inmunología , Inflamación/psicología , Trastornos del Humor/inmunología , Trastornos del Humor/fisiopatología , Psiconeuroinmunología , Animales , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/fisiopatología , Citocinas/metabolismo , Humanos , Inflamación/fisiopatología , Trastornos del Humor/psicología
18.
Mol Pharmacol ; 88(5): 911-25, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26349500

RESUMEN

GPR139 is an orphan G-protein-coupled receptor expressed in the central nervous system. To identify its physiologic ligand, we measured GPR139 receptor activity from recombinant cells after treatment with amino acids, orphan ligands, serum, and tissue extracts. GPR139 activity was measured using guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding, calcium mobilization, and extracellular signal-regulated kinases phosphorylation assays. Amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) activated GPR139, with EC50 values in the 30- to 300-µM range, consistent with the physiologic concentrations of L-Trp and L-Phe in tissues. Chromatography of rat brain, rat serum, and human serum extracts revealed two peaks of GPR139 activity, which corresponded to the elution peaks of L-Trp and L-Phe. With the purpose of identifying novel tools to study GPR139 function, a high-throughput screening campaign led to the identification of a selective small-molecule agonist [JNJ-63533054, (S)-3-chloro-N-(2-oxo-2-((1-phenylethyl)amino)ethyl) benzamide]. The tritium-labeled JNJ-63533054 bound to cell membranes expressing GPR139 and could be specifically displaced by L-Trp and L-Phe. Sequence alignment revealed that GPR139 is highly conserved across species, and RNA sequencing studies of rat and human tissues indicated its exclusive expression in the brain and pituitary gland. Immunohistochemical analysis showed specific expression of the receptor in circumventricular regions of the habenula and septum in mice. Together, these findings suggest that L-Trp and L-Phe are candidate physiologic ligands for GPR139, and we hypothesize that this receptor may act as a sensor to detect dynamic changes of L-Trp and L-Phe in the brain.


Asunto(s)
Habénula/química , Proteínas del Tejido Nervioso/fisiología , Fenilalanina/fisiología , Receptores Acoplados a Proteínas G/fisiología , Tabique del Cerebro/química , Triptófano/fisiología , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/efectos de los fármacos , Fenilalanina/sangre , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/análisis , Receptores Acoplados a Proteínas G/efectos de los fármacos , Triptófano/sangre
19.
Eur J Pharmacol ; 765: 551-9, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26386289

RESUMEN

The ATP-gated ion channel P2X7 has emerged as a potential central nervous system (CNS) drug target based on the hypotheses that pro-inflammatory cytokines such as IL-1ß that are released by microglia, may contribute to the etiology of various disorders of the CNS including depression. In this study, we identified two closely related P2X7 antagonists, JNJ-54232334 and JNJ-54140515, and then tritium labeled the former to produce a new radioligand for P2X7. JNJ-54232334 is a high affinity ligand for the rat P2X7 with a pKi of 9.3±0.1. In rat cortical membranes, [3H] JNJ-54232334 reached saturable binding with equilibrium dissociation (Kd) constant of 4.9±1.3 nM. The compound displayed monophasic association and dissociation kinetics with fast on and off rates. In rat brain sections, specific binding of [3H] JNJ-54232334 was markedly improved compared to the previously described P2X7 radioligand, [3H] A-804598. In P2X7 knockout mouse brain sections, [3H] A-804598 bound to non-P2X7 binding sites in contrast to [3H] JNJ-54232334. In rat or wild type mouse brain sections [3H] JNJ-54232334 bound in a more homogenous and region independent manner. The ubiquitous expression of P2X7 receptors was confirmed with immunohistochemistry in rat brain sections. The partial displacement of [3H] A-804598 binding resulted in the underestimation of the level of ex vivo P2X7 occupancy for JNJ-54140515. Higher levels of P2X7 ex vivo occupancy were measured using [3H] JNJ-54232334 due to less non-specific binding. In summary, we describe [3H] JNJ-54232334 as a novel P2X7 radioligand, with improved properties over [3H] A-804598.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antagonistas del Receptor Purinérgico P2X/química , Antagonistas del Receptor Purinérgico P2X/metabolismo , Pirazinas/química , Pirazinas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Triazoles/química , Triazoles/metabolismo , Tritio/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Guanidinas/química , Guanidinas/metabolismo , Guanidinas/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Noqueados , Unión Proteica/fisiología , Antagonistas del Receptor Purinérgico P2X/farmacología , Pirazinas/farmacología , Quinolinas/química , Quinolinas/metabolismo , Quinolinas/farmacología , Ensayo de Unión Radioligante/métodos , Ratas , Ratas Sprague-Dawley , Triazoles/farmacología , Tritio/farmacología
20.
J Med Chem ; 58(14): 5620-36, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26087021

RESUMEN

The preclinical characterization of novel octahydropyrrolo[3,4-c]pyrroles that are potent and selective orexin-2 antagonists is described. Optimization of physicochemical and DMPK properties led to the discovery of compounds with tissue distribution and duration of action suitable for evaluation in the treatment of primary insomnia. These selective orexin-2 antagonists are proven to promote sleep in rats, and this work ultimately led to the identification of a compound that progressed into human clinical trials for the treatment of primary insomnia. The synthesis, SAR, and optimization of the pharmacokinetic properties of this series of compounds as well as the identification of the clinical candidate, JNJ-42847922 (34), are described herein.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Neuropéptidos/antagonistas & inhibidores , Pirroles/química , Pirroles/farmacología , Animales , Ensayos Clínicos como Asunto , Perros , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Neuropéptidos/metabolismo , Receptores de Orexina/metabolismo , Orexinas , Pirroles/farmacocinética , Pirroles/uso terapéutico , Ratas , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...