Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Funct ; 6(8): 2507-24, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26114728

RESUMEN

Anti-proliferative and pro-apoptotic effects of Bay leaf (Laurus nobilis) in mammalian cancer and HT-29 adenocarcinoma cells have been previously attributed to effects of polyphenolic and essential oil chemical species. Recently, we demonstrated differentiated growth-regulating effects of high (HFBL) versus low molecular mass (LFBL) aqueous fractions of bay leaf and now confirm by comparative effects on gene expression, that HFBL and LFBL suppress HT-29 growth by distinct mechanisms. Induction of intra-cellular lesions including DNA strand breakage by extra-cellular HFBL, invoked the hypothesis that iron-mediated reactive oxygen species with capacity to penetrate cell membrane, were responsible for HFBL-mediated effects, supported by equivalent effects of HFBL in combination with γ radiation. Activities of HFBL and LFBL were interpreted to reflect differentiated responses to iron-mediated reactive oxygen species (ROS), occurring either outside or inside cells. In the presence of LFBL, apoptotic death was relatively delayed compared with HFBL. ROS production by LFBL mediated p53-dependent apoptosis and recovery was suppressed by promoting G1/S phase arrest and failure of cellular tight junctions. In comparison, intra-cellular anti-oxidant protection exerted by LFBL was absent for extra-cellular HFBL (likely polysaccharide-rich), which potentiated more rapid apoptosis by producing DNA double strand breaks. Differentiated effects on expression of genes regulating ROS defense and chromatic condensation by LFBL versus HFBL, were observed. The results support ferrous iron in cell culture systems and potentially in vivo, can invoke different extra-cellular versus intra-cellular ROS-mediated chemistries, that may be regulated by exogenous, including dietary species.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/fisiopatología , Laurus/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Células HT29 , Humanos , Peso Molecular , Extractos Vegetales/química , Hojas de la Planta/química , Análisis de Secuencia de ARN
2.
Artículo en Inglés | MEDLINE | ID: mdl-22953038

RESUMEN

The accumulating evidence of the beneficial effects of cinnamon (Cinnamomum burmanni) in type-2 diabetes, a chronic age-associated disease, has prompted the commercialisation of various supplemental forms of the spice. One such supplement, Cinnulin PF(®), represents the water soluble fraction containing relatively high levels of the double-linked procyanidin type-A polymers of flavanoids. The overall aim of this study was to utilize genome-wide mRNA-Seq analysis to characterise the changes in gene expression caused by Cinnulin PF in immortalised human keratinocytes and microvascular endothelial cells, which are relevant with respect to diabetic complications. In summary, our findings provide insights into the mechanisms of action of Cinnulin PF in diabetes and diabetic complications. More generally, we identify relevant candidate genes which could provide the basis for further investigation.

3.
Genes Nutr ; 7(2): 343-55, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21953375

RESUMEN

The medicinal properties of the leaves and fruit of Olea Europaea (olive tree) have been known since antiquity. Numerous contemporary studies have linked the Mediterranean diet with increased health. In particular, consumption of olive oil has been associated with a decreased risk of cardiovascular disease and certain cancers. Increasingly, there has been an interest in the biological properties of polyphenols, which are minor constituents of olive oil. For example, hydroxytyrosol has been shown to be a potent antioxidant and has anti-atherogenic and anti-cancer properties. The overall aim of this study was to provide insights into the molecular mechanisms of action of hydroxytyrosol using genome-wide mRNA-Seq. Initial experiments were aimed at assessing cytotoxicity, apoptosis and cell cycle effects of hydroxytyrosol in various cell lines. The findings indicated a dose-dependent reduction in cell viability in human erythroleukemic K562 and human keratinocytes. When comparing the viability in parental CEM-CCRF and R100 cells (which overexpress the P-glycoprotein pump), it was determined that the R100 cells were more resistant to effects of hydroxytyrosol suggesting efflux by the multi-drug resistance pump. By comparing the uptake of Hoechst 33342 in the two cell lines that had been pretreated with hydroxytyrosol, it was determined that the polyphenol may have P-glycoprotein-modulating activity. Further, initial studies indicated modest radioprotective effects of relatively low doses of hydroxytyrosol in human keratinocytes. Analysis of mRNA sequencing data identified that treatment of keratinocytes with 20 µM hydroxytyrosol results in the upregulation of numerous antioxidant proteins and enzymes, including heme oxygenase-1 (15.46-fold upregulation), glutaredoxin (1.65) and glutathione peroxidase (1.53). This may account for the radioprotective activity of the compound, and reduction in oxidative stress suggests a mechanism for chemoprevention of cancer by hydroxytyrosol. Alteration in the expression of transcription factors may also contribute to the anti-cancer effects described in numerous studies. These include changes in the expression of STAT3, STAT6, SMAD7 and ETS-1. The telomerase subunit TERT was also found to be downregulated in K562 cells. Overall, our findings provide insights into the mechanisms of action of hydroxytyrosol, and more generally, we identify potential gene candidates for further exploration.

4.
Mutat Res ; 692(1-2): 49-52, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20732333

RESUMEN

PURPOSE: The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. MATERIALS AND METHODS: We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (γH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. RESULTS: We found that methylproamine-treated cells had fewer γH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. CONCLUSIONS: These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.


Asunto(s)
Antimutagênicos/farmacología , Bencimidazoles/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Radiación Ionizante , Protectores contra Radiación/farmacología , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...