Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3078, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594280

RESUMEN

The bacterium Bdellovibrio bacteriovorus is a predator of other Gram-negative bacteria. The predator invades the prey's periplasm and modifies the prey's cell wall, forming a rounded killed prey, or bdelloplast, containing a live B. bacteriovorus. Redundancy in adhesive processes makes invasive mutants rare. Here, we identify a MIDAS adhesin family protein, Bd0875, that is expressed at the predator-prey invasive junction and is important for successful invasion of prey. A mutant strain lacking bd0875 is still able to form round, dead bdelloplasts; however, 10% of the bdelloplasts do not contain B. bacteriovorus, indicative of an invasion defect. Bd0875 activity requires the conserved MIDAS motif, which is linked to catch-and-release activity of MIDAS proteins in other organisms. A proteomic analysis shows that the uninvaded bdelloplasts contain B. bacteriovorus proteins, which are likely secreted into the prey by the Δbd0875 predator during an abortive invasion period. Thus, secretion of proteins into the prey seems to be sufficient for prey killing, even in the absence of a live predator inside the prey periplasm.


Asunto(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Bdellovibrio bacteriovorus/genética , Bdellovibrio/genética , Proteómica , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo
2.
EMBO Rep ; 25(1): 82-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38228789

RESUMEN

The E. coli Paraquat Inducible (Pqi) Pathway is a putative Gram-negative phospholipid transport system. The pathway comprises three components: an integral inner membrane protein (PqiA), a periplasmic spanning MCE family protein (PqiB) and an outer membrane lipoprotein (PqiC). Interactions between all complex components, including stoichiometry, remain uncharacterised; nevertheless, once assembled into their quaternary complex, the trio of Pqi proteins are anticipated to provide a continuous channel between the inner and outer membranes of diderms. Here, we present X-ray structures of both the native and a truncated, soluble construct of the PqiC lipoprotein, providing insight into its biological assembly, and utilise neutron reflectometry to characterise the nature of the PqiB-PqiC-membrane interaction. Finally, we employ phenotypic complementation assays to probe specific PqiC residues, which imply the interaction between PqiB and PqiC is less intimate than previously anticipated.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de la Membrana/metabolismo , Transporte Biológico , Lipoproteínas/metabolismo
3.
Nat Microbiol ; 9(1): 214-227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177296

RESUMEN

Predatory bacteria, like the model endoperiplasmic bacterium Bdellovibrio bacteriovorus, show several adaptations relevant to their requirements for locating, entering and killing other bacteria. The mechanisms underlying prey recognition and handling remain obscure. Here we use complementary genetic, microscopic and structural methods to address this deficit. During invasion, the B. bacteriovorus protein CpoB concentrates into a vesicular compartment that is deposited into the prey periplasm. Proteomic and structural analyses of vesicle contents reveal several fibre-like proteins, which we name the mosaic adhesive trimer (MAT) superfamily, and show localization on the predator surface before prey encounter. These dynamic proteins indicate a variety of binding capabilities, and we confirm that one MAT member shows specificity for surface glycans from a particular prey. Our study shows that the B. bacteriovorus MAT protein repertoire enables a broad means for the recognition and handling of diverse prey epitopes encountered during bacterial predation and invasion.


Asunto(s)
Bdellovibrio bacteriovorus , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/metabolismo , Proteómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
4.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043796

RESUMEN

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Asunto(s)
Proteínas Bacterianas , Clostridioides difficile , Peptidoglicano , Peptidil Transferasas , Proteínas Bacterianas/química , Resistencia betalactámica , beta-Lactamas/farmacología , Catálisis , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Peptidoglicano/química , Peptidil Transferasas/química , Peptidil Transferasas/genética
5.
J Biol Chem ; 300(1): 105494, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006948

RESUMEN

Peptidoglycan is an essential component of the bacterial cell envelope that contains glycan chains substituted by short peptide stems. Peptide stems are polymerized by D,D-transpeptidases, which make bonds between the amino acid in position four of a donor stem and the third residue of an acceptor stem (4-3 cross-links). Some bacterial peptidoglycans also contain 3-3 cross-links that are formed by another class of enzymes called L,D-transpeptidases which contain a YkuD catalytic domain. In this work, we investigate the formation of unusual bacterial 1-3 peptidoglycan cross-links. We describe a version of the PGFinder software that can identify 1-3 cross-links and report the high-resolution peptidoglycan structure of Gluconobacter oxydans (a model organism within the Acetobacteraceae family). We reveal that G. oxydans peptidoglycan contains peptide stems made of a single alanine as well as several dipeptide stems with unusual amino acids at their C-terminus. Using a bioinformatics approach, we identified a G. oxydans mutant from a transposon library with a drastic reduction in 1-3 cross-links. Through complementation experiments in G. oxydans and recombinant protein production in a heterologous host, we identify an L,D-transpeptidase enzyme with a domain distantly related to the YkuD domain responsible for these non-canonical reactions. This work revisits the enzymatic capabilities of L,D-transpeptidases, a versatile family of enzymes that play a key role in bacterial peptidoglycan remodelling.


Asunto(s)
Proteínas Bacterianas , Gluconobacter oxydans , Modelos Moleculares , Peptidoglicano , Peptidil Transferasas , Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico/genética , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/metabolismo , Peptidil Transferasas/química , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Programas Informáticos , Gluconobacter oxydans/enzimología , Gluconobacter oxydans/genética , Biología Computacional , Prueba de Complementación Genética , Estructura Terciaria de Proteína
6.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961452

RESUMEN

Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important amongst these are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are both trafficked out of the bacterium to the host via unknown mechanisms. An important class of exported LM/LAM is the capsular derivative of these molecules which is devoid of its lipid anchor. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures where arabinomannan acts as a signal for growth phase transition. Finally, we demonstrate that LamH is important for Mycobacterium tuberculosis survival in macrophages. These data provide a new framework for understanding the biological role of LAM in mycobacteria.

7.
Microbiology (Reading) ; 169(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535060

RESUMEN

The bacterial predator Bdellovibrio bacteriovorus is a model for the wider phenomenon of bacteria:bacteria predation, and the specialization required to achieve a lifestyle dependent on prey consumption. Bdellovibrio bacteriovorus is able to recognize, enter and ultimately consume fellow Gram-negative bacteria, killing these prey from within their periplasmic space, and lysing the host at the end of the cycle. The classic phenotype-driven characterization (and observation of predation) has benefitted from an increased focus on molecular mechanisms and fluorescence microscopy and tomography, revealing new features of several of the lifecycle stages. Herein we summarize a selection of these advances and describe likely areas for exploration that will push the field toward a more complete understanding of this fascinating 'two-cell' system.


Asunto(s)
Bdellovibrio bacteriovorus , Bdellovibrio bacteriovorus/genética , Bacterias Gramnegativas
8.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37493353

RESUMEN

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Asunto(s)
Biología Computacional , Proteínas , Conformación Proteica , Modelos Moleculares , Biología Computacional/métodos , Proteínas/química
9.
J Bacteriol ; 205(4): e0047522, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37010281

RESUMEN

Lytic transglycosylases cut peptidoglycan backbones, facilitating a variety of functions within bacteria, including cell division, pathogenesis, and insertion of macromolecular machinery into the cell envelope. Here, we identify a novel role of a secreted lytic transglycosylase associated with the predatory lifestyle of Bdellovibrio bacteriovorus strain HD100. During wild-type B. bacteriovorus prey invasion, the predator rounds up rod-shaped prey into spherical prey bdelloplasts, forming a spacious niche within which the predator grows. Deleting the MltA-like lytic transglycosylase Bd3285 still permitted predation but resulted in three different, invaded prey cell shapes: spheres, rods, and "dumbbells." Amino acid D321 within the catalytic C-terminal 3D domain of Bd3285 was essential for wild-type complementation. Microscopic analyses revealed that dumbbell-shaped bdelloplasts are derived from Escherichia coli prey undergoing cell division at the moment of Δbd3285 predator invasion. Prelabeling of E. coli prey peptidoglycan prior to predation with the fluorescent D-amino acid HADA showed that the dumbbell bdelloplasts invaded by B. bacteriovorus Δbd3285 contained a septum. Fluorescently tagged Bd3285, expressed in E. coli, localized to the septum of dividing cells. Our data indicate that B. bacteriovorus secretes the lytic transglycosylase Bd3285 into the E. coli periplasm during prey invasion to cleave the septum of dividing prey, facilitating prey cell occupation. IMPORTANCE Antimicrobial resistance is a serious and rapidly growing threat to global health. Bdellovibrio bacteriovorus can prey upon an extensive range of Gram-negative bacterial pathogens and thus has promising potential as a novel antibacterial therapeutic and is a source of antibacterial enzymes. Here, we elucidate the role of a unique secreted lytic transglycosylase from B. bacteriovorus which acts on the septal peptidoglycan of its prey. This improves our understanding of mechanisms that underpin bacterial predation.


Asunto(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Animales , Bdellovibrio bacteriovorus/genética , Bdellovibrio/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Conducta Predatoria , Aminoácidos/metabolismo
10.
Nat Commun ; 14(1): 2233, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076525

RESUMEN

Bacterial cell growth and division require the coordinated action of enzymes that synthesize and degrade cell wall polymers. Here, we identify enzymes that cleave the D-arabinan core of arabinogalactan, an unusual component of the cell wall of Mycobacterium tuberculosis and other mycobacteria. We screened 14 human gut-derived Bacteroidetes for arabinogalactan-degrading activities and identified four families of glycoside hydrolases with activity against the D-arabinan or D-galactan components of arabinogalactan. Using one of these isolates with exo-D-galactofuranosidase activity, we generated enriched D-arabinan and used it to identify a strain of Dysgonomonas gadei as a D-arabinan degrader. This enabled the discovery of endo- and exo-acting enzymes that cleave D-arabinan, including members of the DUF2961 family (GH172) and a family of glycoside hydrolases (DUF4185/GH183) that display endo-D-arabinofuranase activity and are conserved in mycobacteria and other microbes. Mycobacterial genomes encode two conserved endo-D-arabinanases with different preferences for the D-arabinan-containing cell wall components arabinogalactan and lipoarabinomannan, suggesting they are important for cell wall modification and/or degradation. The discovery of these enzymes will support future studies into the structure and function of the mycobacterial cell wall.


Asunto(s)
Mycobacterium tuberculosis , Polisacáridos , Humanos , Polisacáridos/metabolismo , Mycobacterium tuberculosis/metabolismo , Glicósido Hidrolasas/metabolismo , Pared Celular/metabolismo
11.
Elife ; 112022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36226828

RESUMEN

The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here, we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo VI , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Antibacterianos/farmacología , Islas Genómicas , Escherichia coli/genética , Escherichia coli/metabolismo , Endonucleasas/metabolismo
12.
Nat Commun ; 13(1): 1509, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314810

RESUMEN

Peptidoglycan hydrolases contribute to the generation of helical cell shape in Campylobacter and Helicobacter bacteria, while cytoskeletal or periskeletal proteins determine the curved, vibrioid cell shape of Caulobacter and Vibrio. Here, we identify a peptidoglycan hydrolase in the vibrioid-shaped predatory bacterium Bdellovibrio bacteriovorus which invades and replicates within the periplasm of Gram-negative prey bacteria. The protein, Bd1075, generates cell curvature in B. bacteriovorus by exerting LD-carboxypeptidase activity upon the predator cell wall as it grows inside spherical prey. Bd1075 localizes to the outer convex face of B. bacteriovorus; this asymmetric localization requires a nuclear transport factor 2-like (NTF2) domain at the protein C-terminus. We solve the crystal structure of Bd1075, which is monomeric with key differences to other LD-carboxypeptidases. Rod-shaped Δbd1075 mutants invade prey more slowly than curved wild-type predators and stretch invaded prey from within. We therefore propose that the vibrioid shape of B. bacteriovorus contributes to predatory fitness.


Asunto(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Bdellovibrio/genética , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/metabolismo , Pared Celular/metabolismo , Peptidoglicano/metabolismo , Periplasma/metabolismo
13.
Proteins ; 89(12): 1647-1672, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34561912

RESUMEN

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Biología Computacional , Microscopía por Crioelectrón , Cristalografía por Rayos X , Análisis de Secuencia de Proteína
14.
Microbiology (Reading) ; 167(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33843574

RESUMEN

Bdellovibrio bacteriovorus is an environmentally-ubiquitous bacterium that uses unique adaptations to kill other bacteria. The best-characterized strain, HD100, has a multistage lifestyle, with both a free-living attack phase and an intraperiplasmic growth and division phase inside the prey cell. Advances in understanding the basic biology and regulation of predation processes are paving the way for future potential therapeutic and bioremediation applications of this unusual bacterium.


Asunto(s)
Antibiosis , Bdellovibrio bacteriovorus/fisiología , Bacterias , Fenómenos Fisiológicos Bacterianos , Bdellovibrio bacteriovorus/clasificación , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/aislamiento & purificación , Genoma Bacteriano , Filogenia , Microbiología del Suelo
15.
J Bacteriol ; 203(2)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33106348

RESUMEN

The asymmetric Gram-negative outer membrane (OM) is the first line of defense for bacteria against environmental insults and attack by antimicrobials. The key component of the OM is lipopolysaccharide, which is transported to the surface by the essential lipopolysaccharide transport (Lpt) system. Correct folding of the Lpt system component LptD is regulated by a periplasmic metalloprotease, BepA. Here, we present the crystal structure of BepA from Escherichia coli, solved to a resolution of 2.18 Å, in which the M48 protease active site is occluded by an active-site plug. Informed by our structure, we demonstrate that free movement of the active-site plug is essential for BepA function, suggesting that the protein is autoregulated by the active-site plug, which is conserved throughout the M48 metalloprotease family. Targeted mutagenesis of conserved residues reveals that the negative pocket and the tetratricopeptide repeat (TPR) cavity are required for function and degradation of the BAM complex component BamA under conditions of stress. Last, we show that loss of BepA causes disruption of OM lipid asymmetry, leading to surface exposed phospholipid.IMPORTANCE M48 metalloproteases are widely distributed in all domains of life. E. coli possesses four members of this family located in multiple cellular compartments. The functions of these proteases are not well understood. Recent investigations revealed that one family member, BepA, has an important role in the maturation of a central component of the lipopolysaccharide (LPS) biogenesis machinery. Here, we present the structure of BepA and the results of a structure-guided mutagenesis strategy, which reveal the key residues required for activity that inform how all M48 metalloproteases function.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Metaloproteasas/química , Metaloproteasas/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/aislamiento & purificación , Metaloproteasas/aislamiento & purificación , Permeabilidad , Sensibilidad y Especificidad , Relación Estructura-Actividad
16.
Nat Commun ; 11(1): 4817, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968056

RESUMEN

Lysozymes are among the best-characterized enzymes, acting upon the cell wall substrate peptidoglycan. Here, examining the invasive bacterial periplasmic predator Bdellovibrio bacteriovorus, we report a diversified lysozyme, DslA, which acts, unusually, upon (GlcNAc-) deacetylated peptidoglycan. B. bacteriovorus are known to deacetylate the peptidoglycan of the prey bacterium, generating an important chemical difference between prey and self walls and implying usage of a putative deacetyl-specific "exit enzyme". DslA performs this role, and ΔDslA strains exhibit a delay in leaving from prey. The structure of DslA reveals a modified lysozyme superfamily fold, with several adaptations. Biochemical assays confirm DslA specificity for deacetylated cell wall, and usage of two glutamate residues for catalysis. Exogenous DslA, added ex vivo, is able to prematurely liberate B. bacteriovorus from prey, part-way through the predatory lifecycle. We define a mechanism for specificity that invokes steric selection, and use the resultant motif to identify wider DslA homologues.


Asunto(s)
Bdellovibrio bacteriovorus/enzimología , Bdellovibrio bacteriovorus/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Periplasma/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bdellovibrio bacteriovorus/genética , Pared Celular , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Muramidasa/genética , Mutación , Peptidoglicano/metabolismo , Fenotipo , Conformación Proteica , Especificidad por Sustrato
17.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 9): 414-421, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32880589

RESUMEN

The bifunctional alcohol/aldehyde dehydrogenase (AdhE) comprises both an N-terminal aldehyde dehydrogenase (AldDH) and a C-terminal alcohol dehydrogenase (ADH). In vivo, full-length AdhE oligomerizes into long oligomers known as spirosomes. However, structural analysis of AdhE is challenging owing to the heterogeneity of the spirosomes. Therefore, the domains of AdhE are best characterized separately. Here, the structure of ADH from the pathogenic Escherichia coli O157:H7 was determined to 1.65 Šresolution. The dimeric crystal structure was confirmed in solution by small-angle X-ray scattering.


Asunto(s)
Alcohol Deshidrogenasa/química , Aldehído Oxidorreductasas/química , Escherichia coli O157/enzimología , Proteínas de Escherichia coli/química , Hierro/química , NAD/química , Subunidades de Proteína/química , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cationes Bivalentes , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hierro/metabolismo , Modelos Moleculares , NAD/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Curr Opin Microbiol ; 56: 74-80, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784086

RESUMEN

Bacterial predation, as exemplified by the periplasm-invading model predator Bdellovibrio bacteriovorus, is a fascinating multistage process facilitated by several adaptations to 'regular' bacterial lifestyles. We are beginning to understand more about such adaptations at the molecular level, particularly those concerning processes near the beginning of the predatory lifecycle (recognition, invasion, prey cell wall manipulation). In this review we highlight recent advances in investigating predation and tie these into some of the classical observations and phenotypes that make this two-cell system such an interesting case study in evolution.


Asunto(s)
Bdellovibrio bacteriovorus/fisiología , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Bdellovibrio bacteriovorus/genética , Evolución Biológica , Regulación Bacteriana de la Expresión Génica
19.
Nat Commun ; 11(1): 1791, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286293

RESUMEN

Cyclic di-GMP (c-di-GMP) is a second messenger that modulates multiple responses to environmental and cellular signals in bacteria. Here we identify CdbA, a DNA-binding protein of the ribbon-helix-helix family that binds c-di-GMP in Myxococcus xanthus. CdbA is essential for viability, and its depletion causes defects in chromosome organization and segregation leading to a block in cell division. The protein binds to the M. xanthus genome at multiple sites, with moderate sequence specificity; however, its depletion causes only modest changes in transcription. The interactions of CdbA with c-di-GMP and DNA appear to be mutually exclusive and residue substitutions in CdbA regions important for c-di-GMP binding abolish binding to both c-di-GMP and DNA, rendering these protein variants non-functional in vivo. We propose that CdbA acts as a nucleoid-associated protein that contributes to chromosome organization and is modulated by c-di-GMP, thus revealing a link between c-di-GMP signaling and chromosome biology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Núcleo Celular/metabolismo , Segregación Cromosómica , GMP Cíclico/análogos & derivados , Proteínas de Unión al ADN/metabolismo , Myxococcus xanthus/metabolismo , Proteínas Bacterianas/química , Secuencia de Bases , Cromosomas Bacterianos/metabolismo , GMP Cíclico/metabolismo , ADN Bacteriano/metabolismo , Sitios Genéticos , Modelos Moleculares , Multimerización de Proteína , Estructura Secundaria de Proteína , Transcripción Genética
20.
Nat Chem Biol ; 16(1): 24-30, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31686030

RESUMEN

Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.


Asunto(s)
Lisostafina/química , Peptidoglicano/química , Staphylococcus aureus/química , Bacteriólisis/efectos de los fármacos , Biopelículas , Pared Celular/química , Cromatografía Líquida de Alta Presión , Análisis Mutacional de ADN , Glicina/química , Ligandos , Espectroscopía de Resonancia Magnética , Mutagénesis Sitio-Dirigida , Péptidos/química , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...