Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasitol Res ; 123(1): 52, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099974

RESUMEN

In a 2018 report, an unusual case of cutaneous leishmaniasis was described in a 72-year-old female patient residing in Arizona, United States of America (USA). Preliminary analysis of the 18S rDNA and glyceraldehyde-3-phosphate dehydrogenase genes supported the conclusion that the Leishmania strain (strain 218-L139) isolated from this case was a novel species, though a complete taxonomic description was not provided. Identification of Leishmania at the species level is critical for clinical management and epidemiologic investigations so it is important that novel human-infecting species are characterized taxonomically and assigned a unique scientific name compliant with the ICZN code. Therefore, we sought to provide a complete taxonomic description of Leishmania strain 218-L139. Phylogenetic analysis of several nuclear loci and partial maxicircle genome sequences supported its position within the subgenus Leishmania and further clarified the distinctness of this new species. Morphological characterization of cultured promastigotes and amastigotes from the original case material is also provided. Thus, we conclude that Leishmania (Leishmania) ellisi is a new cause of autochthonous cutaneous leishmaniasis in the USA.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Femenino , Humanos , Estados Unidos , Anciano , Leishmania/genética , Filogenia , ADN Ribosómico/genética
2.
Bioinform Adv ; 3(1): vbad118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744999

RESUMEN

Motivation: Hierarchical clustering of microbial genotypes has the limitation that hierarchical clusters are nested, where smaller groups of related isolates exist within larger groups that get progressively larger as relationships become increasingly distant. In an epidemiologic context, investigators must dissect hierarchical trees into discrete groupings that are epidemiologically meaningful. We recently described a statistical framework (Method A) for dissecting hierarchical trees that attempts to minimize investigator bias. Here, we apply a modified version of that framework (Method B) to a hierarchical tree constructed from 2111 genotypes of the foodborne parasite Cyclospora, including 639 genotypes linked to epidemiologically defined outbreaks. To evaluate Method B's performance, we examined the concordance between these epidemiologically defined groupings and the genetic partitions identified. We also used the same epidemiologic clusters to evaluate the performance of Method A, plus two tree-dissection methods (cutreeHybrid and cutreeDynamic) available within the Dynamic Tree Cut R package, in addition to the TreeCluster method and PARNAS. Results: Compared to the other methods, Method B, TreeCluster, and PARNAS were the most accurate (99.4%) in identifying genetic groups that reflected the epidemiologic groupings, noting that TreeCluster and PARNAS performed identically on our dataset. CutreeHybrid identified groups reflecting patterns in the wider Cyclospora population structure but lacked finer, strain-level discrimination (Simpson's D: cutreeHybrid=0.785). CutreeDynamic displayed good strain discrimination (Simpson's D = 0.933), though lacked sensitivity (77%). At two different threshold/radius settings TreeCluster/PARNAS displayed similar utility to Method B. However, Method B computes a tree-dissection threshold automatically, and the threshold/radius settings used when executing TreeCluster/PARNAS here were computed using Method B. Using a TreeCluster threshold of 0.045 as recommended in the TreeCluster documentation, epidemiologic utility dropped markedly below that of Method B. Availability and implementation: Relevant code and data are publicly available. Source code (Method B) and instructions for its use are available here: https://github.com/Joel-Barratt/Hierarchical-tree-dissection-framework.

3.
Curr Biol ; 33(12): 2449-2464.e8, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37267944

RESUMEN

Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.


Asunto(s)
Blastocystis , Microbioma Gastrointestinal , Animales , Humanos , Blastocystis/genética , Microbioma Gastrointestinal/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Orgánulos/metabolismo , Eucariontes
4.
Biol Open ; 11(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36412269

RESUMEN

Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.


Asunto(s)
Euglena , Euglena/fisiología , Biotecnología , Simbiosis
5.
Comput Struct Biotechnol J ; 20: 6388-6402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420151

RESUMEN

The kinetoplastids are unicellular flagellates that derive their name from the 'kinetoplast', a region within their single mitochondrion harboring its organellar genome of high DNA content, called kinetoplast (k) DNA. Some protein products of this mitochondrial genome are encoded as cryptogenes; their transcripts require editing to generate an open reading frame. This happens through RNA editing, whereby small regulatory guide (g)RNAs direct the proper insertion and deletion of one or more uridines at each editing site within specific transcript regions. An accurate perspective of the kDNA expansion and evolution of their unique uridine insertion/deletion editing across kinetoplastids has been difficult to achieve. Here, we resolved the kDNA structure and editing patterns in the early-branching kinetoplastid Trypanoplasma borreli and compare them with those of the well-studied trypanosomatids. We find that its kDNA consists of circular molecules of about 42 kb that harbor the rRNA and protein-coding genes, and 17 different contigs of approximately 70 kb carrying an average of 23 putative gRNA loci per contig. These contigs may be linear molecules, as they contain repetitive termini. Our analysis uncovered a putative gRNA population with unique length and sequence parameters that is massive relative to the editing needs of this parasite. We validated or determined the sequence identity of four edited mRNAs, including one coding for ATP synthase 6 that was previously thought to be missing. We utilized computational methods to show that the T. borreli transcriptome includes a substantial number of transcripts with inconsistent editing patterns, apparently products of non-canonical editing. This species utilizes the most extensive uridine deletion compared to other studied kinetoplastids to enforce amino acid conservation of cryptogene products, although insertions still remain more frequent. Finally, in three tested mitochondrial transcriptomes of kinetoplastids, uridine deletions are more common in the raw mitochondrial reads than aligned to the fully edited, translationally competent mRNAs. We conclude that the organization of kDNA across known kinetoplastids represents variations on partitioned coding and repetitive regions of circular molecules encoding mRNAs and rRNAs, while gRNA loci are positioned on a highly unstable population of molecules that differ in relative abundance across strains. Likewise, while all kinetoplastids possess conserved machinery performing RNA editing of the uridine insertion/deletion type, its output parameters are species-specific.

6.
Nat Microbiol ; 7(2): 251-261, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102306

RESUMEN

Shigella spp. are the leading bacterial cause of severe childhood diarrhoea in low- and middle-income countries (LMICs), are increasingly antimicrobial resistant and have no widely available licenced vaccine. We performed genomic analyses of 1,246 systematically collected shigellae sampled from seven countries in sub-Saharan Africa and South Asia as part of the Global Enteric Multicenter Study (GEMS) between 2007 and 2011, to inform control and identify factors that could limit the effectiveness of current approaches. Through contemporaneous comparison among major subgroups, we found that S. sonnei contributes ≥6-fold more disease than other Shigella species relative to its genomic diversity, and highlight existing diversity and adaptative capacity among S. flexneri that may generate vaccine escape variants in <6 months. Furthermore, we show convergent evolution of resistance against ciprofloxacin, the current WHO-recommended antimicrobial for the treatment of shigellosis, among Shigella isolates. This demonstrates the urgent need to integrate existing genomic diversity into vaccine and treatment plans for Shigella, providing a framework for the focused application of comparative genomics to guide vaccine development, and the optimization of control and prevention strategies for other pathogens relevant to public health policy considerations.


Asunto(s)
Países en Desarrollo/estadística & datos numéricos , Disentería Bacilar/microbiología , Disentería Bacilar/prevención & control , Shigella/genética , Shigella/patogenicidad , Niño , Preescolar , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Farmacorresistencia Bacteriana , Disentería Bacilar/tratamiento farmacológico , Disentería Bacilar/epidemiología , Evolución Molecular , Genoma Bacteriano , Salud Global , Humanos , Shigella/clasificación , Shigella/efectos de los fármacos , Shigella sonnei/patogenicidad , Secuenciación Completa del Genoma
7.
Genome Biol ; 22(1): 349, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34930397

RESUMEN

We have developed an efficient and inexpensive pipeline for streamlining large-scale collection and genome sequencing of bacterial isolates. Evaluation of this method involved a worldwide research collaboration focused on the model organism Salmonella enterica, the 10KSG consortium. Following the optimization of a logistics pipeline that involved shipping isolates as thermolysates in ambient conditions, the project assembled a diverse collection of 10,419 isolates from low- and middle-income countries. The genomes were sequenced using the LITE pipeline for library construction, with a total reagent cost of less than USD$10 per genome. Our method can be applied to other large bacterial collections to underpin global collaborations.


Asunto(s)
Genoma Bacteriano , Secuenciación Completa del Genoma/métodos , ADN Bacteriano/aislamiento & purificación , Genoma , Humanos , Salmonella enterica/genética , Secuenciación Completa del Genoma/economía
8.
Vaccines (Basel) ; 9(12)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34960172

RESUMEN

Cryptosporidium parvum (C. parvum) is a protozoan parasite known for cryptosporidiosis in pre-weaned calves. Animals and patients with immunosuppression are at risk of developing the disease, which can cause potentially fatal diarrhoea. The present study aimed to construct a network biology framework based on the differentially expressed genes (DEGs) of C. parvum infected subjects. In this way, the gene expression profiling analysis of C. parvum infected individuals can give us a snapshot of actively expressed genes and transcripts under infection conditions. In the present study, we have analyzed microarray data sets and compared the gene expression profiles of the patients with the different data sets of the healthy control. Using a network medicine approach to identify the most influential genes in the gene interaction network, we uncovered essential genes and pathways related to C. parvum infection. We identified 164 differentially expressed genes (109 up- and 54 down-regulated DEGs) and allocated them to pathway and gene set enrichment analysis. The results underpin the identification of seven significant hub genes with high centrality values: ISG15, MX1, IFI44L, STAT1, IFIT1, OAS1, IFIT3, RSAD2, IFITM1, and IFI44. These genes are associated with diverse biological processes not limited to host interaction, type 1 interferon production, or response to IL-gamma. Furthermore, four genes (IFI44, IFIT3, IFITM1, and MX1) were also discovered to be involved in innate immunity, inflammation, apoptosis, phosphorylation, cell proliferation, and cell signaling. In conclusion, these results reinforce the development and implementation of tools based on gene profiles to identify and treat Cryptosporidium parvum-related diseases at an early stage.

9.
Clin Infect Dis ; 73(4): 631-641, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-33493332

RESUMEN

BACKGROUND: The Global Enteric Multicenter Study (GEMS) determined the etiologic agents of moderate-to-severe diarrhea (MSD) in children under 5 years old in Africa and Asia. Here, we describe the prevalence and antimicrobial susceptibility of nontyphoidal Salmonella (NTS) serovars in GEMS and examine the phylogenetics of Salmonella Typhimurium ST313 isolates. METHODS: Salmonella isolated from children with MSD or diarrhea-free controls were identified by classical clinical microbiology and serotyped using antisera and/or whole-genome sequence data. We evaluated antimicrobial susceptibility using the Kirby-Bauer disk-diffusion method. Salmonella Typhimurium sequence types were determined using multi-locus sequence typing, and whole-genome sequencing was performed to assess the phylogeny of ST313. RESULTS: Of 370 Salmonella-positive individuals, 190 (51.4%) were MSD cases and 180 (48.6%) were diarrhea-free controls. The most frequent Salmonella serovars identified were Salmonella Typhimurium, serogroup O:8 (C2-C3), serogroup O:6,7 (C1), Salmonella Paratyphi B Java, and serogroup O:4 (B). The prevalence of NTS was low but similar across sites, regardless of age, and was similar among both cases and controls except in Kenya, where Salmonella Typhimurium was more commonly associated with cases than controls. Phylogenetic analysis showed that these Salmonella Typhimurium isolates, all ST313, were highly genetically related to isolates from controls. Generally, Salmonella isolates from Asia were resistant to ciprofloxacin and ceftriaxone, but African isolates were susceptible to these antibiotics. CONCLUSIONS: Our data confirm that NTS is prevalent, albeit at low levels, in Africa and South Asia. Our findings provide further evidence that multidrug-resistant Salmonella Typhimurium ST313 can be carried asymptomatically by humans in sub-Saharan Africa.


Asunto(s)
Infecciones por Salmonella , Antibacterianos/farmacología , Niño , Preescolar , Humanos , Kenia/epidemiología , Tipificación de Secuencias Multilocus , Filogenia , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/genética
10.
Commun Biol ; 2: 297, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396577

RESUMEN

In both mammalian and fission yeast cells, conserved shelterin and CST (CTC1-STN1-TEN1) complexes play critical roles in protection of telomeres and regulation of telomerase, an enzyme required to overcome the end replication problem. However, molecular details that govern proper coordination among shelterin, CST, and telomerase have not yet been fully understood. Here, we establish a conserved SWSSS motif, located adjacent to the Lys242 SUMOylation site in the fission yeast shelterin subunit Tpz1, as a new functional regulatory element for telomere protection and telomere length homeostasis. The SWSSS motif works redundantly with Lys242 SUMOylation to promote binding of Stn1-Ten1 at telomere and sub-telomere regions to protect against single-strand annealing (SSA)-dependent telomere fusions, and to prevent telomerase accumulation at telomeres. In addition, we provide evidence that the SWSSS motif defines an unanticipated role of Tpz1 in limiting telomerase activation at telomeres to prevent uncontrolled telomere elongation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Telomerasa/metabolismo , Homeostasis del Telómero , Proteínas de Unión a Telómeros/metabolismo , Telómero/enzimología , Secuencias de Aminoácidos , Secuencia Conservada , Proteínas de Unión al ADN/genética , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Unión Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Sumoilación , Telómero/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética
11.
Genome Biol Evol ; 11(8): 2391-2402, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31364699

RESUMEN

In Europe, Trichomonas gallinae recently emerged as a cause of epidemic disease in songbirds. A clonal strain of the parasite, first found in the United Kingdom, has become the predominant strain there and spread to continental Europe. Discriminating this epidemic strain of T. gallinae from other strains necessitated development of multilocus sequence typing (MLST). Development of the MLST was facilitated by the assembly and annotation of a 54.7 Mb draft genome of a cloned stabilate of the A1 European finch epidemic strain (isolated from Greenfinch, Chloris chloris, XT-1081/07 in 2007) containing 21,924 protein coding genes. This enabled construction of a robust 19 locus MLST based on existing typing loci for Trichomonas vaginalis and T. gallinae. Our MLST has the sensitivity to discriminate strains within existing genotypes confidently, and resolves the American finch A1 genotype from the European finch epidemic A1 genotype. Interestingly, one isolate we obtained from a captive black-naped fruit dove Ptilinopsus melanospilus, was not truly T. gallinae but a hybrid of T. gallinae with a distant trichomonad lineage. Phylogenetic analysis of the individual loci in this fruit dove provides evidence of gene flow between distant trichomonad lineages at 2 of the 19 loci examined and may provide precedence for the emergence of other hybrid trichomonad genomes including T. vaginalis.


Asunto(s)
Enfermedades de las Aves/parasitología , Evolución Molecular , Pinzones/parasitología , Genoma de Protozoos , Proteínas Protozoarias/genética , Tricomoniasis/veterinaria , Trichomonas/genética , Animales , Enfermedades de las Aves/epidemiología , ADN Protozoario/genética , Regulación de la Expresión Génica , Tipificación de Secuencias Multilocus , Filogenia , Transcriptoma , Trichomonas/aislamiento & purificación , Tricomoniasis/epidemiología , Tricomoniasis/parasitología
12.
Proc Natl Acad Sci U S A ; 111(16): 5950-5, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711392

RESUMEN

Telomeres protect DNA ends of linear eukaryotic chromosomes from degradation and fusion, and ensure complete replication of the terminal DNA through recruitment of telomerase. The regulation of telomerase is a critical area of telomere research and includes cis regulation by the shelterin complex in mammals and fission yeast. We have identified a key component of this regulatory pathway as the SUMOylation [the covalent attachment of a small ubiquitin-like modifier (SUMO) to target proteins] of a shelterin subunit in fission yeast. SUMOylation is known to be involved in the negative regulation of telomere extension by telomerase; however, how SUMOylation limits the action of telomerase was unknown until now. We show that SUMOylation of the shelterin subunit TPP1 homolog in Schizosaccharomyces pombe (Tpz1) on lysine 242 is important for telomere length homeostasis. Furthermore, we establish that Tpz1 SUMOylation prevents telomerase accumulation at telomeres by promoting recruitment of Stn1-Ten1 to telomeres. Our findings provide major mechanistic insights into how the SUMOylation pathway collaborates with shelterin and Stn1-Ten1 complexes to regulate telomere length.


Asunto(s)
Proteínas Portadoras/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sumoilación , Homeostasis del Telómero , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Proteínas de Unión al ADN , Fase G2 , Ligasas , Lisina/metabolismo , Modelos Biológicos , Unión Proteica , Fase S , Schizosaccharomyces/citología , Telomerasa/metabolismo , Acortamiento del Telómero , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...