Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665325

RESUMEN

The telencephalon and eye in mammals are originated from adjacent fields at the anterior neural plate. Morphogenesis of these fields generates telencephalon, optic-stalk, optic-disc, and neuroretina along a spatial axis. How these telencephalic and ocular tissues are specified coordinately to ensure directional retinal ganglion cell (RGC) axon growth is unclear. Here, we report self-formation of human telencephalon-eye organoids comprising concentric zones of telencephalic, optic-stalk, optic-disc, and neuroretinal tissues along the center-periphery axis. Initially-differentiated RGCs grew axons towards and then along a path defined by adjacent PAX2+ VSX2+ optic-disc cells. Single-cell RNA sequencing of these organoids not only confirmed telencephalic and ocular identities but also identified expression signatures of early optic-disc, optic-stalk, and RGCs. These signatures were similar to those in human fetal retinas. Optic-disc cells in these organoids differentially expressed FGF8 and FGF9; FGFR inhibitions drastically decreased early RGC differentiation and directional axon growth. Through the RGC-specific cell-surface marker CNTN2 identified here, electrophysiologically excitable RGCs were isolated under a native condition. Our findings provide insight into the coordinated specification of early telencephalic and ocular tissues in humans and establish resources for studying RGC-related diseases such as glaucoma.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Animales , Humanos , Retina , Axones , Telencéfalo , Mamíferos
2.
bioRxiv ; 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993285

RESUMEN

The telencephalon and eye in mammals are originated from adjacent fields at the anterior neural plate. Morphogenesis of these fields generates telencephalon, optic-stalk, optic-disc, and neuroretina along a spatial axis. How these telencephalic and ocular tissues are specified coordinately to ensure directional retinal ganglion cell (RGC) axon growth is unclear. Here, we report the self-formation of human telencephalon-eye organoids comprising concentric zones of telencephalic, optic-stalk, optic-disc, and neuroretinal tissues along the center-periphery axis. Initially-differentiated RGCs grew axons towards and then along a path defined by adjacent PAX2+ optic-disc cells. Single-cell RNA sequencing of CONCEPT organoids not only confirmed telencephalic and ocular identities but also identified expression signatures of early optic-disc, optic-stalk, and RGCs. These signatures were similar to those in human fetal retinas. Optic-disc cells in CONCEPT organoids differentially expressed FGF8 and FGF9 ; FGFR inhibitions drastically decreased RGC differentiation and directional axon growth. Through the identified RGC-specific cell-surface marker CNTN2, electrophysiologically-excitable RGCs were isolated under a native condition. Our findings provide insight into the coordinated specification of early telencephalic and ocular tissues in humans and establish resources for studying RGC-related diseases such as glaucoma. Impact statement: A human telencephalon-eye organoid model that exhibited axon growth and pathfinding from retinal ganglion cell (RGC) axons is reported; via cell surface marker CNTN2 identified using scRNA-seq, early RGCs were isolated under a native condition.

3.
Proc Natl Acad Sci U S A ; 116(22): 10824-10833, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31072937

RESUMEN

Rod and cone photoreceptors are light-sensing cells in the human retina. Rods are dominant in the peripheral retina, whereas cones are enriched in the macula, which is responsible for central vision and visual acuity. Macular degenerations affect vision the most and are currently incurable. Here we report the generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids differentiated from hESCs using an improved retinal differentiation system. Induced by extracellular matrix, aggregates of hESCs formed single-lumen cysts composed of epithelial cells with anterior neuroectodermal/ectodermal fates, including retinal cell fate. Then, the cysts were en bloc-passaged, attached to culture surface, and grew, forming colonies in which retinal progenitor cell patches were found. Following gentle cell detachment, retinal progenitor cells self-assembled into retinal epithelium-retinal organoid-that differentiated into stratified cone-rich retinal tissue in agitated cultures. Electron microscopy revealed differentiating outer segments of photoreceptor cells. Bulk RNA-sequencing profiling of time-course retinal organoids demonstrated that retinal differentiation in vitro recapitulated in vivo retinogenesis in temporal expression of cell differentiation markers and retinal disease genes, as well as in mRNA alternative splicing. Single-cell RNA-sequencing profiling of 8-mo retinal organoids identified cone and rod cell clusters and confirmed the cone enrichment initially revealed by quantitative microscopy. Notably, cones from retinal organoids and human macula had similar single-cell transcriptomes, and so did rods. Cones in retinal organoids exhibited electrophysiological functions. Collectively, we have established cone-rich retinal organoids and a reference of transcriptomes that are valuable resources for retinal studies.


Asunto(s)
Organoides , Células Fotorreceptoras Retinianas Conos , Transcriptoma/genética , Diferenciación Celular/fisiología , Línea Celular , Células Madre Embrionarias , Humanos , Organoides/química , Organoides/citología , Organoides/metabolismo , Organoides/fisiología , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/química , Retina/citología , Retina/metabolismo , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/química , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Análisis de la Célula Individual
4.
Dis Model Mech ; 11(2)2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29419415

RESUMEN

RNA splicing factors are essential for the viability of all eukaryotic cells; however, in metazoans some cell types are exquisitely sensitive to disruption of splicing factors. Neuronal cells represent one such cell type, and defects in RNA splicing factors can lead to neurodegenerative diseases. The basis for this tissue selectivity is not well understood owing to difficulties in analyzing the consequences of splicing factor defects in whole-animal systems. Here, we use zebrafish mutants to show that loss of spliceosomal components, including splicing factor 3b, subunit 1 (sf3b1), causes increased DNA double-strand breaks and apoptosis in embryonic neurons. Moreover, these mutants show a concomitant accumulation of R-loops, which are non-canonical nucleic acid structures that promote genomic instability. Dampening R-loop formation by conditional induction of ribonuclease H1 in sf3b1 mutants reduced neuronal DNA damage and apoptosis. These findings show that splicing factor dysfunction leads to R-loop accumulation and DNA damage that sensitizes embryonic neurons to apoptosis. Our results suggest that diseases associated with splicing factor mutations could be susceptible to treatments that modulate R-loop levels.


Asunto(s)
Apoptosis , Citoprotección , Daño del ADN , Neuronas/citología , Neuronas/metabolismo , Conformación de Ácido Nucleico , Empalmosomas/metabolismo , Pez Cebra/genética , Animales , Apoptosis/efectos de la radiación , Citoprotección/efectos de la radiación , Roturas del ADN de Doble Cadena , Genes Esenciales , Mutación/genética , Neuronas/efectos de la radiación , Empalme del ARN/genética , Empalme del ARN/efectos de la radiación , Tolerancia a Radiación/genética , Tolerancia a Radiación/efectos de la radiación , Radiación Ionizante , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
5.
Stem Cell Reports ; 6(5): 743-756, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27132890

RESUMEN

In this study we dissected retinal organoid morphogenesis in human embryonic stem cell (hESC)-derived cultures and established a convenient method for isolating large quantities of retinal organoids for modeling human retinal development and disease. Epithelialized cysts were generated via floating culture of clumps of Matrigel/hESCs. Upon spontaneous attachment and spreading of the cysts, patterned retinal monolayers with tight junctions formed. Dispase-mediated detachment of the monolayers and subsequent floating culture led to self-formation of retinal organoids comprising patterned neuroretina, ciliary margin, and retinal pigment epithelium. Intercellular adhesion-dependent cell survival and ROCK-regulated actomyosin-driven forces are required for the self-organization. Our data supports a hypothesis that newly specified neuroretina progenitors form characteristic structures in equilibrium through minimization of cell surface tension. In long-term culture, the retinal organoids autonomously generated stratified retinal tissues, including photoreceptors with ultrastructure of outer segments. Our system requires minimal manual manipulation, has been validated in two lines of human pluripotent stem cells, and provides insight into optic cup invagination in vivo.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias Humanas/metabolismo , Retina/metabolismo , Quinasas Asociadas a rho/genética , Actomiosina/genética , Adhesión Celular/genética , Supervivencia Celular/genética , Células Madre Embrionarias Humanas/citología , Humanos , Morfogénesis/genética , Organoides/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Retina/crecimiento & desarrollo , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Epitelio Pigmentado de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA