Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Physiol ; 594(4): 1069-85, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26613645

RESUMEN

KEY POINTS: The basal forebrain is an important component of the ascending arousal system and may be a key site through which the orexin neurons promote arousal. It has long been known that orexin-A and -B excite basal forebrain cholinergic neurons, but orexin-producing neurons also make the inhibitory peptide dynorphin. Using whole-cell recordings in brain slices, we found that dynorphin-A directly inhibits basal forebrain cholinergic neurons via κ-opioid receptors, and decreases afferent excitatory synaptic input to these neurons. While the effects of dynorphin-A and orexin-A desensitize over multiple applications, co-application of dynorphin-A and orexin-A produces a sustained response that reverses depending on the membrane potential of basal forebrain cholinergic neurons. At -40 mV the net effect of the co-application is inhibition by dynorphin-A, whereas at -70 mV the excitatory response to orexin-A prevails. ABSTRACT: The basal forebrain (BF) is an essential component of the ascending arousal systems and may be a key site through which the orexin (also known as hypocretin) neurons drive arousal and promote the maintenance of normal wakefulness. All orexin neurons also make dynorphin, and nearly all brain regions innervated by the orexin neurons express kappa opiate receptors, the main receptor for dynorphin. This is remarkable because orexin excites target neurons including BF neurons, but dynorphin has inhibitory effects. We identified the sources of dynorphin input to the magnocellular preoptic nucleus and substantia innominata (MCPO/SI) in mice and determined the effects of dynorphin-A on MCPO/SI cholinergic neurons using patch-clamp recordings in brain slices. We found that the orexin neurons are the main source of dynorphin input to the MCPO/SI region, and dynorphin-A inhibits MCPO/SI cholinergic neurons through κ-opioid receptors by (1) activation of a G protein-coupled inwardly rectifying potassium current, (2) inhibition of a voltage-gated Ca(2+) current and (3) presynaptic depression of the glutamatergic input to these neurons. The responses both to dynorphin-A and to orexin-A desensitize, but co-application of dynorphin-A and orexin-A produces a sustained response. In addition, the polarity of the response to the co-application depends on the membrane potential of BF neurons; at -40 mV the net effect of the co-application is inhibition by dynorphin-A, whereas at -70 mV the excitatory response to orexin-A prevails. This suggests that depending on their state of activation, BF cholinergic neurons can be excited or inhibited by signals from the orexin neurons.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Dinorfinas/metabolismo , Área Preóptica/metabolismo , Sustancia Innominada/metabolismo , Sinapsis/metabolismo , Animales , Canales de Calcio/metabolismo , Neuronas Colinérgicas/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Ratones , Ratones Endogámicos C57BL , Orexinas/metabolismo , Área Preóptica/citología , Área Preóptica/fisiología , Receptores Opioides/metabolismo , Sustancia Innominada/citología , Sustancia Innominada/fisiología , Sinapsis/fisiología , Potenciales Sinápticos
2.
Neuroscience ; 170(4): 1065-79, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20691763

RESUMEN

PKC-theta (PKC-θ), a member of the novel protein kinase C family (nPKC), regulates a wide variety of functions in the periphery. However, its presence and role in the CNS has remained largely unknown. Recently, we demonstrated the presence of PKC-θ in the arcuate hypothalamic nucleus (ARC) and knockdown of PKC-θ from the ARC protected mice from developing diet-induced obesity. Another isoform of the nPKC group, PKC-delta (PKC-δ), is expressed in several non-hypothalamic brain sites including the thalamus and hippocampus. Although PKC-δ has been implicated in regulating hypothalamic glucose homeostasis, its distribution in the hypothalamus has not previously been described. In the current study, we used immunohistochemistry to examine the distribution of PKC-θ and -δ immunoreactivity in rat and mouse hypothalamus. We found PKC-θ immunoreactive neurons in several hypothalamic nuclei including the ARC, lateral hypothalamic area, perifornical area and tuberomammillary nucleus. PKC-δ immunoreactive neurons were found in the paraventricular and supraoptic nuclei. Double-label immunohistochemisty in mice expressing green fluorescent protein either with the long form of leptin receptor (LepR-b) or in orexin (ORX) neurons indicated that PKC-θ is highly colocalized in lateral hypothalamic ORX neurons but not in lateral hypothalamic LepR-b neurons. Double-label immunohistochemistry in oxytocin-enhanced yellow fluorescent protein mice or arginine vasopressin-enhanced green fluorescent protein (AVP-EGFP) transgenic rats revealed a high degree of colocalization of PKC-δ within paraventricular and supraoptic oxytocin neurons but not the vasopressinergic neurons. We conclude that PKC-θ and -δ are expressed in different hypothalamic neuronal populations.


Asunto(s)
Hipotálamo/enzimología , Isoenzimas/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C/metabolismo , Animales , Arginina Vasopresina/metabolismo , Histidina Descarboxilasa/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Oxitocina/metabolismo , Proteína Quinasa C-theta , Ratas , Ratas Long-Evans , Receptores de Leptina/metabolismo
3.
J Mol Endocrinol ; 29(2): 251-64, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12370125

RESUMEN

Catecholamines regulate white adipose tissue function and development by acting through beta- and alpha2-adrenergic receptors (ARs). Human adipocytes express mainly alpha 2A- but few or no beta 3-ARs while the reverse is true for rodent adipocytes. Our aim was to generate a mouse model with a human-like alpha2/beta-adrenergic balance in adipose tissue by creating transgenic mice harbouring the human alpha 2A-AR gene under the control of its own regulatory elements in a combined mouse beta 3-AR-/- and human beta 3-AR+/+ background. Transgenic mice exhibit functional human alpha 2A-ARs only in white fat cells. Interestingly, as in humans, subcutaneous adipocytes expressed higher levels of alpha2-AR than perigonadal fat cells, which are associated with a better antilipolytic response to epinephrine. High-fat-diet-induced obesity was observed in transgenic mice in the absence of fat cell size modifications. In addition, analysis of gene expression related to lipid metabolism in isolated adipocytes suggested reduced lipid mobilization and no changes in lipid storage capacity of transgenic mice fed a high-fat diet. Finally, the development of adipose tissue in these mice was not associated with significant modifications of glucose and insulin blood levels. Thus, these transgenic mice constitute an original model of diet-induced obesity for in vivo physiological and pharmacological studies with respect to the alpha2/beta-AR balance in adipose tissue.


Asunto(s)
Tejido Adiposo/metabolismo , Receptores Adrenérgicos alfa 2/genética , Adipocitos/citología , Animales , Glucemia/análisis , Presión Sanguínea , Peso Corporal , Tamaño de la Célula , Grasas de la Dieta/farmacología , Ácidos Grasos no Esterificados/sangre , Femenino , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/sangre , Lipólisis/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Receptores Adrenérgicos alfa 2/biosíntesis , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta/fisiología , Distribución Tisular
4.
Mol Cell ; 8(5): 971-82, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11741533

RESUMEN

Cachexia is a chronic state of negative energy balance and muscle wasting that is a severe complication of cancer and chronic infection. While cytokines such as IL-1alpha, IL-1beta, and TNFalpha can mediate cachectic states, how these molecules affect energy expenditure is unknown. We show here that many cytokines activate the transcriptional PPAR gamma coactivator-1 (PGC-1) through phosphorylation by p38 kinase, resulting in stabilization and activation of PGC-1 protein. Cytokine or lipopolysaccharide (LPS)-induced activation of PGC-1 in cultured muscle cells or muscle in vivo causes increased respiration and expression of genes linked to mitochondrial uncoupling and energy expenditure. These data illustrate a direct thermogenic action of cytokines and p38 MAP kinase through the transcriptional coactivator PGC-1.


Asunto(s)
Caquexia/fisiopatología , Citocinas/farmacología , Metabolismo Energético , Activación Enzimática/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Respiración de la Célula/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Factores Nucleares de Respiración , Oxígeno/metabolismo , Fosforilación , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos
5.
Mol Cell Endocrinol ; 184(1-2): 173-85, 2001 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-11694353

RESUMEN

Weight homeostasis is exquisitely sensitive to changes in the abundance of melanocortin-4 receptor (MC4-R). To begin to understand the factors that regulate MC4-R gene expression, we determined there are no introns in the gene, there are multiple starts of transcription, and a cluster of 3' ends. A series of MC4-R-luciferase gene reporter chimerics was developed and transfected into cell lines expressing (UMR106; GT1-7; HEK293) and not expressing (Neuro 2A) endogenous MC4-R mRNA. The longest construct, which includes approximately 3.3 kb 5'-flanking, 425 bp 5'-untranslated (UTR) and 1852 bp 3'-flanking, significantly increased luciferase reporter gene expression 24-, 13-, and 3-fold compared to pGL3-basic when expressed in HEK293, UMR106, and GT1-7 cells, respectively. Deletion analysis of mMC4-R 5'-flanking cDNA identified full mMC4-R promoter activity within 178 bp upstream of the major start of transcription. The mMC4-R gene structure and reporter chimerics provide a fundamental framework for the identification of specific factors regulating MC4-R gene expression.


Asunto(s)
Región de Flanqueo 5'/genética , Regulación de la Expresión Génica/genética , Ratones/genética , Receptores de Corticotropina/genética , Región de Flanqueo 3'/genética , Región de Flanqueo 5'/fisiología , Animales , Secuencia de Bases , Clonación Molecular , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , ARN Mensajero/metabolismo , Ratas , Receptor de Melanocortina Tipo 4 , Alineación de Secuencia , Distribución Tisular , Transcripción Genética/genética , Células Tumorales Cultivadas
6.
Cell ; 105(6): 745-55, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11440717

RESUMEN

beta cells sense glucose through its metabolism and the resulting increase in ATP, which subsequently stimulates insulin secretion. Uncoupling protein-2 (UCP2) mediates mitochondrial proton leak, decreasing ATP production. In the present study, we assessed UCP2's role in regulating insulin secretion. UCP2-deficient mice had higher islet ATP levels and increased glucose-stimulated insulin secretion, establishing that UCP2 negatively regulates insulin secretion. Of pathophysiologic significance, UCP2 was markedly upregulated in islets of ob/ob mice, a model of obesity-induced diabetes. Importantly, ob/ob mice lacking UCP2 had restored first-phase insulin secretion, increased serum insulin levels, and greatly decreased levels of glycemia. These results establish UCP2 as a key component of beta cell glucose sensing, and as a critical link between obesity, beta cell dysfunction, and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas de Transporte de Membrana , Proteínas Mitocondriales , Obesidad , Proteínas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal , Modelos Animales de Enfermedad , Marcación de Gen , Homeostasis , Humanos , Hiperglucemia , Insulina/sangre , Secreción de Insulina , Canales Iónicos , Masculino , Ratones , Ratones Noqueados , Ratones Obesos , Modelos Biológicos , Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Termogénesis , Desacopladores/metabolismo , Proteína Desacopladora 2
7.
Physiol Genomics ; 5(3): 137-45, 2001 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-11285367

RESUMEN

The cDNA of an uncoupling protein (UCP) homolog has been cloned from the swallow-tailed hummingbird, Eupetomena macroura. The hummingbird uncoupling protein (HmUCP) cDNA was amplified from pectoral muscle (flight muscle) using RT-PCR and primers for conserved domains of various known UCP homologs. The rapid amplification of cDNA ends (RACE) method was used to complete the cloning of the 5' and 3' ends of the open reading frame. The HmUCP coding region contains 915 nucleotides, and the deduced protein sequence consists of 304 amino acids, being approximately 72, 70, and 55% identical to human UCP3, UCP2, and UCP1, respectively. The uncoupling activity of this novel protein was characterized in yeast. In this expression system, the 12CA5-tagged HmUCP fusion protein was detected by Western blot in the enriched mitochondrial fraction. Similarly to rat UCP1, HmUCP decreased the mitochondrial membrane potential as measured in whole yeast by uptake of the fluorescent potential-sensitive dye 3',3-dihexyloxacarbocyanine iodide. The HmUCP mRNA is primarily expressed in skeletal muscle, but high levels can also be detected in heart and liver, as assessed by Northern blot analysis. Lowering the room's temperature to 12-14 degrees C triggered the cycle torpor/rewarming, typical of hummingbirds. Both in the pectoral muscle and heart, HmUCP mRNA levels were 1.5- to 3.4-fold higher during torpor. In conclusion, this is the first report of an UCP homolog in birds. The data indicate that HmUCP has the potential to function as an UCP and could play a thermogenic role during rewarming.


Asunto(s)
Aves/genética , Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana , Proteínas Mitocondriales , Proteínas/genética , Secuencia de Aminoácidos , Animales , Aves/fisiología , Clonación Molecular , Canales Iónicos , Potenciales de la Membrana , Mitocondrias/fisiología , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/biosíntesis , Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , Termogénesis , Distribución Tisular , Proteína Desacopladora 1 , Proteína Desacopladora 2 , Proteína Desacopladora 3
8.
J Biol Chem ; 276(23): 20240-4, 2001 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-11274222

RESUMEN

To clarify the role of uncoupling protein-3 (UCP3) in skeletal muscle, we used NMR and isotopic labeling experiments to evaluate the effect of UCP3 knockout (UCP3KO) in mice on the regulation of energy metabolism in vivo. Whole body energy expenditure was determined from the turnover of doubly labeled body water. Coupling of mitochondrial oxidative phosphorylation in skeletal muscle was evaluated from measurements of rates of ATP synthesis (using (31)P NMR magnetization transfer experiments) and tricarboxylic acid (TCA) cycle flux (calculated from the time course of (13)C enrichment in C-4 and C-2 of glutamate during an infusion of [2-(13)C]acetate). At the whole body level, we observed no change in energy expenditure. However, at the cellular level, skeletal muscle UCP3KO increased the rate of ATP synthesis from P(i) more than 4-fold under fasting conditions (wild type, 2.2 +/- 0.6 versus knockout, 9.1 +/- 1.4 micromol/g of muscle/min, p < 0.001) with no change in TCA cycle flux rate (wild type, 0.74 +/- 0.04 versus knockout, 0.71 +/- 0.03 micromol/g of muscle/min). The increased efficiency of ATP production may account for the significant (p < 0.05) increase in the ratio of ATP to ADP in the muscle of UCP3KO mice (5.9 +/- 0.3) compared with controls (4.5 +/- 0.4). The data presented here provide the first evidence of uncoupling activity by UCP3 in skeletal muscle in vivo.


Asunto(s)
Proteínas Portadoras/fisiología , Mitocondrias/metabolismo , Nucleótidos de Adenina/biosíntesis , Nucleótidos de Adenina/metabolismo , Animales , Proteínas Portadoras/genética , Ciclo del Ácido Cítrico , Metabolismo Energético , Canales Iónicos , Ratones , Ratones Noqueados , Proteínas Mitocondriales , Fosforilación Oxidativa , Proteína Desacopladora 3
9.
J Biol Chem ; 276(16): 12520-9, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-11278970

RESUMEN

UCP3 is a mitochondrial membrane protein expressed in humans selectively in skeletal muscle. To determine the mechanisms by which UCP3 plays a role in regulating glucose metabolism, we expressed human UCP3 in L6 myotubes by adenovirus-mediated gene transfer and in H(9)C(2) cardiomyoblasts by stable transfection with a tetracycline-repressible UCP3 construct. Expression of UCP3 in L6 myotubes increased 2-deoxyglucose uptake 2-fold and cell surface GLUT4 2.3-fold, thereby reaching maximally insulin-stimulated levels in control myotubes. Wortmannin, LY 294002, or the tyrosine kinase inhibitor genistein abolished the effect of UCP3 on glucose uptake, and wortmannin inhibited UCP3-induced GLUT4 cell surface recruitment. UCP3 overexpression increased phosphotyrosine-associated phosphoinositide 3-kinase (PI3K) activity 2.2-fold compared with control cells (p < 0.05). UCP3 overexpression increased lactate release 1.5- to 2-fold above control cells, indicating increased glucose metabolism. In H(9)C(2) cardiomyoblasts stably transfected with UCP3 under control of a tetracycline-repressible promotor, removal of doxycycline resulted in detectable levels of UCP3 at 12 h and 2.2-fold induction at 7 days compared with 12 h. In parallel, glucose transport increased 1.3- and 2-fold at 12 h and 7 days, respectively, and the stimulation was inhibited by wortmannin or genistein. p85 association with membranes was increased 5.5-fold and phosphotyrosine-associated PI3K activity 3.8-fold. In contrast, overexpression of UCP3 in 3T3-L1 adipocytes did not alter glucose uptake, suggesting tissue-specific effects of human UCP3. Thus, UCP3 stimulates glucose transport and GLUT4 translocation to the cell surface in cardiac and skeletal muscle cells by activating a PI3K dependent pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Desoxiglucosa/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células 3T3 , Adipocitos/citología , Adipocitos/metabolismo , Androstadienos/farmacología , Animales , Transporte Biológico , Línea Celular , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Doxiciclina/farmacología , Inhibidores Enzimáticos/farmacología , Genisteína/farmacología , Glucosa/metabolismo , Humanos , Insulina/farmacología , Canales Iónicos , Lactatos/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales , Músculo Esquelético/citología , Miocardio/metabolismo , Proteínas Recombinantes/metabolismo , Transfección , Proteína Desacopladora 3 , Wortmanina
10.
Biochem Biophys Res Commun ; 276(2): 642-8, 2000 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-11027525

RESUMEN

Uncoupling protein (UCP) 1 and UCP3 are mitochondrial inner membrane proteins which both mediate proton leak and thus decrease the mitochondrial transmembrane proton gradient. However, UCP1 and UCP3 differ in their biochemical regulation. UCP1 is activated by free fatty acids and inhibited by purine nucleotides. Using heterologous expression studies in yeast, UCP3 was found to lack both fatty acid activation and purine nucleotide inhibition. To assess which domains are responsible for the regulation of UCP1 by free fatty acids and by purine nucleotides and the absence of such regulation in UCP3, chimeric proteins were generated. Given that uncoupling proteins, like all members of the mitochondrial carrier family, possess a tripartite structure and consist of three repeated domains of approximately 100 residues, swaps in the three repeated domains were made between UCP1 and UCP3. Regulation of the resulting six different chimeric proteins by free fatty acids and purine nucleotides was studied after heterologous expression in yeast mitochondria. In this study, it is shown that activation of UCP1 by free fatty acids is mediated by the second repeated domain, since substitution of the second repeat of UCP1 by the equivalent repeat of UCP3 abolishes fatty acid activation. In contrast, replacing the second repeat of UCP3 by the corresponding repeated domain of UCP1 results in fatty acid activation similar to wild type UCP1. The lack of free fatty acid activation of UCP3 is not due to the absence of the histidine pair H145 and H147 found in the second repeated domain of UCP1. Furthermore, the findings with respect to purine nucleotide inhibition are consistent with a significant role of the C-terminal repeated domain of UCP1 in mediating purine nucleotide inhibition.


Asunto(s)
Proteínas Portadoras/metabolismo , Ácidos Grasos/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Transporte Biológico , Proteínas Portadoras/genética , Humanos , Canales Iónicos , Proteínas de la Membrana/genética , Proteínas Mitocondriales , Bombas de Protones/metabolismo , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Proteína Desacopladora 1 , Proteína Desacopladora 3
11.
Proc Natl Acad Sci U S A ; 97(22): 12239-43, 2000 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-11035806

RESUMEN

Friedreich's ataxia (FA) is an autosomal recessive disease caused by decreased expression of the mitochondrial protein frataxin. The biological function of frataxin is unclear. The homologue of frataxin in yeast, YFH1, is required for cellular respiration and was suggested to regulate mitochondrial iron homeostasis. Patients suffering from FA exhibit decreased ATP production in skeletal muscle. We now demonstrate that overexpression of frataxin in mammalian cells causes a Ca(2+)-induced up-regulation of tricarboxylic acid cycle flux and respiration, which, in turn, leads to an increased mitochondrial membrane potential (delta psi(m)) and results in an elevated cellular ATP content. Thus, frataxin appears to be a key activator of mitochondrial energy conversion and oxidative phosphorylation.


Asunto(s)
Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Células 3T3 , Animales , Calcio/metabolismo , Ciclo del Ácido Cítrico , Metabolismo Energético , Potenciales de la Membrana/fisiología , Ratones , Mitocondrias/fisiología , Fosforilación Oxidativa , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Triglicéridos/biosíntesis , Frataxina
12.
J Biol Chem ; 275(44): 34797-802, 2000 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-10948198

RESUMEN

Catecholamines play an important role in controlling white adipose tissue function and development. beta- and alpha 2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte alpha 2/beta-AR balance in obesity, and it has been proposed that increased alpha 2-ARs in adipose tissue with or without decreased beta-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte alpha 2/beta-AR balance was genetically manipulated in mice. Human alpha 2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (-/-) or heterozygous (+/-) for a disrupted beta 3-AR allele. Mice expressing alpha 2-ARs in fat, in the absence of beta 3-ARs (beta 3-AR -/- background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of alpha2-ARs, the absence of beta 3-ARs, and a high fat diet. Of note, obese alpha 2-transgenic beta 3 -/- mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased alpha 2/beta-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (alpha 2 and beta 3-AR) and diet interact to influence fat mass.


Asunto(s)
Tejido Adiposo/metabolismo , Grasas de la Dieta/administración & dosificación , Obesidad/genética , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 3/fisiología , Tejido Adiposo/efectos de los fármacos , Animales , Epinefrina/metabolismo , Humanos , Ratones , Ratones Transgénicos , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos beta 3/genética
13.
Nat Med ; 6(8): 924-8, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10932232

RESUMEN

The prevalence of type 2 diabetes mellitus is growing worldwide. By the year 2020, 250 million people will be afflicted. Most forms of type 2 diabetes are polygenic with complex inheritance patterns, and penetrance is strongly influenced by environmental factors. The specific genes involved are not yet known, but impaired glucose uptake in skeletal muscle is an early, genetically determined defect that is present in non-diabetic relatives of diabetic subjects. The rate-limiting step in muscle glucose use is the transmembrane transport of glucose mediated by glucose transporter (GLUT) 4 (ref. 4), which is expressed mainly in skeletal muscle, heart and adipose tissue. GLUT4 mediates glucose transport stimulated by insulin and contraction/exercise. The importance of GLUT4 and glucose uptake in muscle, however, was challenged by two recent observations. Whereas heterozygous GLUT4 knockout mice show moderate glucose intolerance, homozygous whole-body GLUT4 knockout (GLUT4-null) mice have only mild perturbations in glucose homeostasis and have growth retardation, depletion of fat stores, cardiac hypertrophy and failure, and a shortened life span. Moreover, muscle-specific inactivation of the insulin receptor results in minimal, if any, change in glucose tolerance. To determine the importance of glucose uptake into muscle for glucose homeostasis, we disrupted GLUT4 selectively in mouse muscles. A profound reduction in basal glucose transport and near-absence of stimulation by insulin or contraction resulted. These mice showed severe insulin resistance and glucose intolerance from an early age. Thus, GLUT4-mediated glucose transport in muscle is essential to the maintenance of normal glucose homeostasis.


Asunto(s)
Resistencia a la Insulina/fisiología , Proteínas de Transporte de Monosacáridos/deficiencia , Proteínas de Transporte de Monosacáridos/genética , Proteínas Musculares , Músculo Esquelético/metabolismo , Animales , Secuencia de Bases , Transporte Biológico Activo/efectos de los fármacos , Cartilla de ADN/genética , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4 , Humanos , Técnicas In Vitro , Insulina/farmacología , Resistencia a la Insulina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos
14.
Diabetes ; 49(2): 143-56, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10868929

RESUMEN

Mitochondria use energy derived from fuel combustion to create a proton electrochemical gradient across the mitochondrial inner membrane. This intermediate form of energy is then used by ATP synthase to synthesize ATP. Uncoupling protein-1 (UCP1) is a brown fat-specific mitochondrial inner membrane protein with proton transport activity. UCP1 catalyzes a highly regulated proton leak, converting energy stored within the mitochondrial proton electrochemical potential gradient to heat. This uncouples fuel oxidation from conversion of ADP to ATP. In rodents, UCP1 activity and brown fat contribute importantly to whole-body energy expenditure. Recently, two additional mitochondrial carriers with high similarity to UCP1 were molecularly cloned. In contrast to UCP1, UCP2 is expressed widely, and UCP3 is expressed preferentially in skeletal muscle. Biochemical studies indicate that UCP2 and UCP3, like UCP1, have uncoupling activity. While UCP1 is known to play an important role in regulating heat production during cold exposure, the biological functions of UCP2 and UCP3 are unknown. Possible functions include 1) control of adaptive thermogenesis in response to cold exposure and diet, 2) control of reactive oxygen species production by mitochondria, 3) regulation of ATP synthesis, and 4) regulation of fatty acid oxidation. This article will survey present knowledge regarding UCP1, UCP2, and UCP3, and review proposed functions for the two new uncoupling proteins.


Asunto(s)
Proteínas Portadoras/fisiología , Metabolismo Energético/fisiología , Proteínas de Transporte de Membrana , Mitocondrias/metabolismo , Proteínas Mitocondriales , Proteínas/fisiología , Animales , Proteínas Portadoras/genética , Expresión Génica , Ligamiento Genético , Variación Genética , Humanos , Canales Iónicos , Modelos Biológicos , Proteínas/genética , Proteína Desacopladora 2 , Proteína Desacopladora 3
15.
Recept Channels ; 7(1): 17-23, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10800773

RESUMEN

Pharmacological studies have revealed a non-beta1, beta2 or beta3 adrenergic receptor that mediates tachycardia in rat and human atria. The present studies utilized transgenic mice that lack the rodent beta3 receptor to explore, in a more definitive fashion, whether a non-beta1, beta2 or beta3 receptor can mediate atrial tachycardia. Insofar as the rat stomach fundus possesses a beta3 receptor mediating relaxation, we examined the stomach fundus from beta3 receptor knockout mice for the presence or absence of the beta3 relaxant receptor. Contractile responses to carbamylcholine were similar in potency and magnitude between mouse stomach fundus from wild type and beta3 receptor knockout animals. However, the classical beta3 receptor agonist CL316243, (10(-8)-10(-6)M) relaxed stomach fundus from wild type mice, but not from the beta3 receptor knockout animals. These data provide functional evidence for the absence of the beta3 receptor in beta3 receptor knockout animals and support the role of beta3 receptors mediating relaxation in mouse stomach fundus. Atria from mice lacking the beta3 receptor responded similarly (in potency and maximal increase in heart rate) to isoproterenol (10(-9)-10(-6)M) as atria from wild type mice. Furthermore, propranolol (3 x 10(-7) M) produced a dextral shift in the concentration response to isoproterenol in atria from both the beta3 receptor knockout and wild type mice with negative log K(B) values of 8.03 and 8.09, respectively. Thus, beta receptors mediating tachycardia to isoproterenol are intact and respond similarly in atria from both knockout and wild type mice. Furthermore, CGP12177, a prototypic 'atypical' beta receptor agonist produced tachycardia with a similar EC50 and maximal response in atria from both the wild type and beta3 receptor knockout mice. Cyanopindolol was a partial agonist relative to CGP12177 in both wild type and beta3 receptor knockout mice. Tachycardia to CGP12177 and cyanopindolol was not blocked by propranolol (3 x 10(-7) M) in atria from either group. These data provide definitive evidence that the receptor mediating tachycardia to CGP12177 and to cyanopindolol in atria from the transgenic beta3 receptor knockout mice is neither the beta1, beta2, nor beta3 adrenergic receptor.


Asunto(s)
Receptores Adrenérgicos beta/fisiología , Estómago/fisiología , Agonistas Adrenérgicos beta/farmacología , Animales , Función Atrial , Atrios Cardíacos/efectos de los fármacos , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Relajación Muscular/efectos de los fármacos , Relajación Muscular/fisiología , Propanolaminas/farmacología , Ratas , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta 3 , Estómago/efectos de los fármacos
16.
Biochemistry ; 39(19): 5845-51, 2000 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-10801335

RESUMEN

Using a heterologous yeast expression system, we have previously found a marked discordance between the effects of uncoupling protein (UCP) 1 and UCP3L on basal O(2) consumption in whole yeast versus isolated mitochondria. In whole yeast, UCP3L produces a greater stimulation of basal O(2) consumption, while in isolated mitochondria, UCP1 produces a much greater effect. As shown previously and in this report, UCP3L, in contrast to UCP1, is not inhibited by purine nucleotides. In the present study, we addressed two hypothetical mechanisms that could account for the observed discordance: (i) in whole yeast, purine nucleotides inhibit UCP1 but not UCP3L and (ii) preparations of isolated mitochondria lack an activator of UCP3L that is normally present in vivo. By use of a mutant of UCP1 that lacks purine nucleotide inhibition, it is demonstrated that cytosolic concentrations of purine nucleotides present in yeast effectively inhibit UCP1 activity. This suggests that the lower activity of UCP1 compared to UCP3L in whole yeast is due to purine nucleotide inhibition of UCP1 but not UCP3L. As potential activators of UCP3L we tested free fatty acids in whole yeast and isolated mitochondria. While UCP1 was strongly activated by free fatty acids, no stimulatory effect on UCP3L was observed. In summary, this study indicates that UCP1 and UCP3L differ in their regulation by purine nucleotides and free fatty acids. This different regulation may be related to different physiological functions of the two proteins.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Desacopladores/metabolismo , Animales , Arginina/genética , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Ácidos Grasos no Esterificados/farmacología , Vectores Genéticos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Canales Iónicos , Leucina/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales , Consumo de Oxígeno/genética , Palmitatos/farmacología , Nucleótidos de Purina/farmacología , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Desacopladores/antagonistas & inhibidores , Proteína Desacopladora 1 , Proteína Desacopladora 3
17.
J Biol Chem ; 275(21): 16258-66, 2000 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-10748196

RESUMEN

Uncoupling protein 3 (UCP3) is a member of the mitochondrial anion carrier superfamily. Based upon its high homology with UCP1 and its restricted tissue distribution to skeletal muscle and brown adipose tissue, UCP3 has been suggested to play important roles in regulating energy expenditure, body weight, and thermoregulation. Other postulated roles for UCP3 include regulation of fatty acid metabolism, adaptive responses to acute exercise and starvation, and prevention of reactive oxygen species (ROS) formation. To address these questions, we have generated mice lacking UCP3 (UCP3 knockout (KO) mice). Here, we provide evidence that skeletal muscle mitochondria lacking UCP3 are more coupled (i.e. increased state 3/state 4 ratio), indicating that UCP3 has uncoupling activity. In addition, production of ROS is increased in mitochondria lacking UCP3. This study demonstrates that UCP3 has uncoupling activity and that its absence may lead to increased production of ROS. Despite these effects on mitochondrial function, UCP3 does not seem to be required for body weight regulation, exercise tolerance, fatty acid oxidation, or cold-induced thermogenesis. The absence of such phenotypes in UCP3 KO mice could not be attributed to up-regulation of other UCP mRNAs. However, alternative compensatory mechanisms cannot be excluded. The consequence of increased mitochondrial coupling in UCP3 KO mice on metabolism and the possible role of yet unidentified compensatory mechanisms, remains to be determined.


Asunto(s)
Proteínas Portadoras/genética , Metabolismo Energético/genética , Proteínas de Transporte de Membrana , Proteínas Mitocondriales , Animales , Temperatura Corporal/genética , Peso Corporal/genética , Proteínas Portadoras/metabolismo , Ingestión de Alimentos , Femenino , Marcación de Gen , Canales Iónicos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Fenotipo , Condicionamiento Físico Animal , Proteínas/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 1 , Proteína Desacopladora 2 , Proteína Desacopladora 3
18.
Nature ; 404(6778): 652-60, 2000 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-10766252

RESUMEN

Obesity results when energy intake exceeds energy expenditure. Naturally occurring genetic mutations, as well as ablative lesions, have shown that the brain regulates both aspects of energy balance and that abnormalities in energy expenditure contribute to the development of obesity. Energy can be expended by performing work or producing heat (thermogenesis). Adaptive thermogenesis, or the regulated production of heat, is influenced by environmental temperature and diet. Mitochondria, the organelles that convert food to carbon dioxide, water and ATP, are fundamental in mediating effects on energy dissipation. Recently, there have been significant advances in understanding the molecular regulation of energy expenditure in mitochondria and the mechanisms of transcriptional control of mitochondrial genes. Here we explore these developments in relation to classical physiological views of adaptive thermogenesis.


Asunto(s)
Metabolismo Energético/fisiología , Adaptación Fisiológica , Tejido Adiposo Pardo/fisiología , Animales , Temperatura Corporal/genética , Encéfalo/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas de Unión al ADN/fisiología , Metabolismo Energético/genética , Alimentos , Predicción , Factor de Transcripción de la Proteína de Unión a GA , Regulación de la Expresión Génica , Humanos , Canales Iónicos , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales , Músculo Esquelético/fisiología , Factores Nucleares de Respiración , Transactivadores/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Proteína Desacopladora 1
19.
J Clin Invest ; 104(12): 1703-14, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10606624

RESUMEN

Glucose enters the heart via GLUT1 and GLUT4 glucose transporters. GLUT4-deficient mice develop striking cardiac hypertrophy and die prematurely. Whether their cardiac changes are caused primarily by GLUT4 deficiency in cardiomyocytes or by metabolic changes resulting from the absence of GLUT4 in skeletal muscle and adipose tissue is unclear. To determine the role of GLUT4 in the heart we used cre-loxP recombination to generate G4H(-/-) mice in which GLUT4 expression is abolished in the heart but is present in skeletal muscle and adipose tissue. Life span and serum concentrations of insulin, glucose, FFAs, lactate, and beta-hydroxybutyrate were normal. Basal cardiac glucose transport and GLUT1 expression were both increased approximately 3-fold in G4H(-/-) mice, but insulin-stimulated glucose uptake was abolished. G4H(-/-) mice develop modest cardiac hypertrophy associated with increased myocyte size and induction of atrial natriuretic and brain natriuretic peptide gene expression in the ventricles. Myocardial fibrosis did not occur. Basal and isoproterenol-stimulated isovolumic contractile performance was preserved. Thus, selective ablation of GLUT4 in the heart initiates a series of events that results in compensated cardiac hypertrophy.


Asunto(s)
Cardiomegalia/etiología , Proteínas de Transporte de Monosacáridos/fisiología , Proteínas Musculares , Contracción Miocárdica , Animales , Factor Natriurético Atrial/genética , Cardiomegalia/fisiopatología , Femenino , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 4 , Masculino , Ratones , Ratones Transgénicos , Proteínas de Transporte de Monosacáridos/genética , Miocardio/metabolismo , Péptido Natriurético Encefálico/genética , Tamaño de los Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...