Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(21): 21411-21419, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37871166

RESUMEN

Covalent organic frameworks (COFs) are a promising class of crystalline polymer networks that are useful due to their high porosity, versatile functionality, and tunable architecture. Conventional solution-based methods of producing COFs are marred by slow reactions that produce powders that are difficult to process into adaptable form factors for functional applications, and there is a need for facile and fast synthesis techniques for making crystalline and ordered covalent organic framework (COF) thin films. In this work, we report a chemical vapor deposition (CVD) approach utilizing co-evaporation of two monomers onto a heated substrate to produce highly crystalline, defect-free COF films and coatings with hydrazone, imine, and ketoenamine COF linkages. This all-in-one synthesis technique produces highly crystalline, 40 nm-1 µm-thick COF films on Si/SiO2 substrates in less than 30 min. Crystallinity and alignment were proven by using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and transmission electron microscopy (TEM), and successful conversion of the monomers to produce the target COF was supported by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-vis measurements. Additionally, we used atomic force microscopy (AFM) to investigate the growth mechanisms of these films, showing the coalescence of triangular crystallites into a smooth film. To show the wide applicability and scope of the CVD process, we also prepared crystalline ordered COF films with imine and ketoenamine linkages. These films show potential as high-quality size exclusion membranes, catalytic platforms, and organic transistors.

2.
Chemistry ; 29(67): e202302304, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37665636

RESUMEN

Covalent Organic Frameworks (COFs) are crystalline, porous organic materials. Recent studies have demonstrated novel processing strategies for COFs to form adaptable architectures, but these have focused primarily on imine-linked COFs. This work presents a new synthesis and processing route to produce crystalline hydrazone-linked COF gels and aerogels with hierarchical porosity. The method was implemented to produce a series of hydrazone-linked COFs with different alkyl side-chain substituents, achieving control of the hydrophilicity of the final aerogel. Variation in the length of the alkyl substituents yielded materials with controllable form factors that can preferentially adsorb water or nonpolar organic solvents. Additionally, a method for additive manufacturing of hydrazone-linked COFs using hydroxymethylcellulose as a sacrificial additive is presented. This work demonstrates an effective and simple approach to the fabrication of hydrazone COF aerogels and additive manufacturing to produce hydrazone COFs of desired shape.

3.
Mitochondrial DNA ; 22 Suppl 1: 52-70, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21299446

RESUMEN

BACKGROUND AND AIMS: Here we describe preliminary efforts to integrate DNA barcoding into an ongoing inventory of the Lower Congo River (LCR) ichthyofauna. The 350 km stretch of the LCR from Pool Malebo to Boma includes the world's largest river rapids. The LCR ichthyofauna is hyperdiverse and rich in endemism due to high habitat heterogeneity, numerous dispersal barriers, and its downstream location in the basin. MATERIALS AND METHODS: We have documented 328 species from the LCR, 25% of which are thought to be endemic. In addition to detailing progress made to generate a reference sequence library of DNA barcodes for these fishes, we ask how DNA can be used at the current stage of the Fish Barcode of Life initiative, as a work in progress currently of limited utility to a wide audience. Two possibilities that we explore are the potential for DNA barcodes to generate discrete diagnostic characters for species, and to help resolve problematic taxa lacking clear morphologically diagnostic characters such as many species of the cyprinid genus Labeo, which we use as a case study. RESULTS: Our molecular analysis helped to clarify the validity of some species that were the subject of historical debate, and we were able to construct a molecular key for all monophyletic and morphologically recognizable species. Several species sampled from across the Congo Basin and widely distributed throughout Central and West Africa were recovered as paraphyletic based on our molecular data. CONCLUSION: Our study underscores the importance of generating reference barcodes for specimens collected from, or in close proximity to, type localities, particularly where species are poorly understood taxonomically and the extent of their geographical distributions have yet to be established.


Asunto(s)
Cyprinidae/clasificación , Código de Barras del ADN Taxonómico/métodos , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Peces/clasificación , Ríos , Animales , Secuencia de Bases , Congo , Cyprinidae/genética , República Democrática del Congo , Evolución Molecular , Proteínas de Peces/genética , Peces/genética , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
Biol Lett ; 6(5): 692-5, 2010 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-20410032

RESUMEN

Excessive ingestion of mercury--a health hazard associated with consuming predatory fishes--damages neurological, sensory-motor and cardiovascular functioning. The mercury levels found in Bigeye Tuna (Thunnus obesus) and bluefin tuna species (Thunnus maccoyii, Thunnus orientalis, and Thunnus thynnus), exceed or approach levels permissible by Canada, the European Union, Japan, the US, and the World Health Organization. We used DNA barcodes to identify tuna sushi samples analysed for mercury and demonstrate that the ability to identify cryptic samples in the market place allows regulatory agencies to more accurately measure the risk faced by fish consumers and enact policies that better safeguard their health.


Asunto(s)
Código de Barras del ADN Taxonómico , Mercurio/análisis , Alimentos Marinos/análisis , Atún/genética , Animales , Humanos , Especificidad de la Especie
5.
PLoS One ; 4(11): e7866, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19924239

RESUMEN

BACKGROUND: The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. METHODOLOGY/PRINCIPAL FINDINGS: Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of "white tuna" were not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus. CONCLUSIONS/SIGNIFICANCE: The Convention on International Trade Endangered Species (CITES) requires that listed species must be identifiable in trade. This research fulfills this requirement for tuna, and supports the nomination of northern bluefin tuna for CITES listing in 2010.


Asunto(s)
ADN/análisis , Análisis de los Alimentos/métodos , Atún/clasificación , Animales , Ciclooxigenasa 1/genética , Especies en Peligro de Extinción , Contaminación de Alimentos/prevención & control , Filogenia , Restaurantes , Alimentos Marinos/clasificación , Atún/genética , Estados Unidos
6.
Ecol Appl ; 19(7): 1858-67, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19831075

RESUMEN

In agroecosystems, biodiversity correlates with ecosystem function, yet mechanisms driving these relationships are often unknown. Examining traits and functional classifications of organisms providing ecosystem functions may provide insight into the mechanisms. Birds are important predators of insects, including pests. However, biological simplification of agroforests may decrease provisioning of this pest removal service by reducing bird taxonomic and functional diversity. A recent meta-analysis of bird exclosure studies from a range of agroecosystems in Central America concluded that higher bird richness is associated with significantly greater arthropod removal, yet the mechanism remains unclear. We conducted a meta-analysis of the same data to examine whether birds demonstrate functional complementarity in tropical agroforests. We classified birds according to relevant traits (body mass, foraging strategy, foraging Strata, and diet) and then examined how design of functional classification, including trait selection, classification methods, and the functional diversity metric used affect the suitability of different classifications as predictors of ecosystem services. We determined that vegetation characteristics are not likely drivers of arthropod removal by birds. For some functional classifications, functional richness positively correlated with arthropod removal, indicating that species complementarity may be an important mechanism behind this ecosystem function. The predictive ability of functional classifications increased with the number of traits included in the classification. For the two best classifications examined, functional group richness was a better predictor of arthropod reduction than other metrics of functional diversity (FD and Rao's Q). However, no functional classification predicted arthropod removal better than simple species richness; thus other factors may be important. Our analysis indicates that the sampling effect may also play a role, as one species and two functional groups were responsible for disproportionate effects of arthropod removal.


Asunto(s)
Agricultura , Artrópodos/fisiología , Aves/fisiología , Ecosistema , Conducta Predatoria/fisiología , Clima Tropical , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...