Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 5: 79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24624125

RESUMEN

Circadian rhythms are important biological signals that have been found in almost all major groups of life from bacteria to man, yet it remains unclear if any members of the second major prokaryotic domain of life, the Archaea, also possess a biological clock. As an initial investigation of this question, we examined the regulation of four cyanobacterial-like circadian gene homologs present in the genome of the haloarchaeon Haloferax volcanii. These genes, designated cirA, cirB, cirC, and cirD, display similarity to the KaiC-family of cyanobacterial clock proteins, which act to regulate rhythmic gene expression and to control the timing of cell division. Quantitative RT-PCR analysis was used to examine the expression of each of the four cir genes in response to 12 h light/12 h dark cycles (LD 12:12) in H. volcanii during balanced growth. Our data reveal that there is an approximately two to sixteen-fold increase in cir gene expression when cells are shifted from light to constant darkness, and this pattern of gene expression oscillates with the light conditions in a rhythmic manner. Targeted single- and double-gene knockouts in the H. volcanii cir genes result in disruption of light-dependent, rhythmic gene expression, although it does not lead to any significant effect on growth under these conditions. Restoration of light-dependent, rhythmic gene expression was demonstrated by introducing, in trans, a wild-type copy of individual cir genes into knockout strains. These results are noteworthy as this is the first attempt to characterize the transcriptional expression and regulation of the ubiquitous kaiC homologs found among archaeal genomes.

2.
Elife ; 2: e00426, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23580255

RESUMEN

Genetic and molecular approaches have been critical for elucidating the mechanism of the mammalian circadian clock. Here, we demonstrate that the ClockΔ19 mutant behavioral phenotype is significantly modified by mouse strain genetic background. We map a suppressor of the ClockΔ19 mutation to a ∼900 kb interval on mouse chromosome 1 and identify the transcription factor, Usf1, as the responsible gene. A SNP in the promoter of Usf1 causes elevation of its transcript and protein in strains that suppress the Clock mutant phenotype. USF1 competes with the CLOCK:BMAL1 complex for binding to E-box sites in target genes. Saturation binding experiments demonstrate reduced affinity of the CLOCKΔ19:BMAL1 complex for E-box sites, thereby permitting increased USF1 occupancy on a genome-wide basis. We propose that USF1 is an important modulator of molecular and behavioral circadian rhythms in mammals. DOI:http://dx.doi.org/10.7554/eLife.00426.001.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Relojes Circadianos , Ritmo Circadiano , ADN/metabolismo , Mutación , Factores Estimuladores hacia 5'/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Sitios de Unión , Unión Competitiva , Proteínas CLOCK/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Elementos E-Box , Regulación de la Expresión Génica , Genotipo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/metabolismo , Transducción de Señal , Especificidad de la Especie , Factores de Tiempo , Transcripción Genética , Activación Transcripcional , Factores Estimuladores hacia 5'/genética
3.
Adv Genet ; 74: 175-230, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21924978

RESUMEN

The mammalian circadian system is a complex hierarchical temporal network which is organized around an ensemble of uniquely coupled cells comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus. This central pacemaker is entrained each day by the environmental light/dark cycle and transmits synchronizing cues to cell-autonomous oscillators in tissues throughout the body. Within cells of the central pacemaker and the peripheral tissues, the underlying molecular mechanism by which oscillations in gene expression occur involves interconnected feedback loops of transcription and translation. Over the past 10 years, we have learned much regarding the genetics of this system, including how it is particularly resilient when challenged by single-gene mutations, how accessory transcriptional loops enhance the robustness of oscillations, how epigenetic mechanisms contribute to the control of circadian gene expression, and how, from coupled neuronal networks, emergent clock properties arise. Here, we will explore the genetics of the mammalian circadian system from cell-autonomous molecular oscillations, to interactions among central and peripheral oscillators and ultimately, to the daily rhythms of behavior observed in the animal.


Asunto(s)
Ritmo Circadiano , Mamíferos/genética , Animales , Relojes Biológicos , Humanos , Mamíferos/fisiología
4.
Proc Natl Acad Sci U S A ; 107(18): 8399-403, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20404168

RESUMEN

Most laboratory mouse strains including C57BL/6J do not produce detectable levels of pineal melatonin owing to deficits in enzymatic activity of arylalkylamine N-acetyltransferase (AANAT) and N-acetylserotonin O-methyl transferase (ASMT), two enzymes necessary for melatonin biosynthesis. Here we report that alleles segregating at these two loci in C3H/HeJ mice, an inbred strain producing melatonin, suppress the circadian period-lengthening effect of the Clock mutation. Through a functional mapping approach, we localize mouse Asmt to chromosome X and show that it, and the Aanat locus on chromosome 11, are significantly associated with pineal melatonin levels. Treatment of suprachiasmatic nucleus (SCN) explant cultures from Period2(Luciferase) (Per2(Luc)) Clock/+ reporter mice with melatonin, or the melatonin agonist, ramelteon, phenocopies the genetic suppression of the Clock mutant phenotype observed in living animals. These results demonstrate that melatonin suppresses the Clock/+ mutant phenotype and interacts with Clock to affect the mammalian circadian system.


Asunto(s)
Proteínas CLOCK/metabolismo , Ritmo Circadiano , Regulación hacia Abajo , Melatonina/biosíntesis , Mutación , Acetilserotonina O-Metiltransferasa/metabolismo , Animales , N-Acetiltransferasa de Arilalquilamina/metabolismo , Conducta Animal , Proteínas CLOCK/genética , Cromosomas , Ratones , Ratones Endogámicos C3H , Fenotipo
5.
Proc Natl Acad Sci U S A ; 102(7): 2608-13, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15699353

RESUMEN

The mouse Period2 (mPer2) locus is an essential negative-feedback element of the mammalian circadian-clock mechanism. Recent work has shown that mPer2 circadian gene expression persists in both central and peripheral tissues. Here, we analyze the mouse mPer2 promoter and identify a circadian enhancer (E2) with a noncanonical 5'-CACGTT-3' E-box located 20 bp upstream of the mPer2 transcription start site. The E2 enhancer accounts for most circadian transcriptional drive of the mPer2 locus by CLOCK:BMAL1, is a major site of DNaseI hypersensitivity in this region, and is constitutively bound by a transcriptional complex containing the CLOCK protein. Importantly, the E2 enhancer is sufficient to drive self-sustained circadian rhythms of luciferase activity in central and peripheral tissues from mPer2-E2::Luciferase transgenic mice with tissue-specific phase and period characteristics. Last, genetic analysis with mutations in Clock and Bmal1 shows that the E2 enhancer is a target of CLOCK and BMAL1 in vivo.


Asunto(s)
Ritmo Circadiano/genética , Elementos E-Box , Elementos de Facilitación Genéticos , Proteínas Nucleares/genética , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas CLOCK , Proteínas de Ciclo Celular , Línea Celular , Femenino , Expresión Génica , Homocigoto , Humanos , Luciferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Proteínas Circadianas Period , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Transactivadores/genética , Factores de Transcripción/genética , Transcripción Genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-15485355

RESUMEN

During the past decade, the molecular mechanisms underlying the mammalian circadian clock have been defined. A core set of circadian clock genes common to most cells throughout the body code for proteins that feed back to regulate not only their own expression, but also that of clock output genes and pathways throughout the genome. The circadian system represents a complex multioscillatory temporal network in which an ensemble of coupled neurons comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus is entrained to the daily light/dark cycle and subsequently transmits synchronizing signals to local circadian oscillators in peripheral tissues. Only recently has the importance of this system to the regulation of such fundamental biological processes as the cell cycle and metabolism become apparent. A convergence of data from microarray studies, quantitative trait locus analysis, and mutagenesis screens demonstrates the pervasiveness of circadian regulation in biological systems. The importance of maintaining the internal temporal homeostasis conferred by the circadian system is revealed by animal models in which mutations in genes coding for core components of the clock result in disease, including cancer and disturbances to the sleep/wake cycle.


Asunto(s)
Ritmo Circadiano , Genoma , Mamíferos/fisiología , Animales , Humanos , Mamíferos/genética , Sueño/genética , Vigilia/genética
7.
Proc Natl Acad Sci U S A ; 101(15): 5339-46, 2004 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-14963227

RESUMEN

Mammalian circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), and current dogma holds that the SCN is required for the expression of circadian rhythms in peripheral tissues. Using a PERIOD2::LUCIFERASE fusion protein as a real-time reporter of circadian dynamics in mice, we report that, contrary to previous work, peripheral tissues are capable of self-sustained circadian oscillations for >20 cycles in isolation. In addition, peripheral organs expressed tissue-specific differences in circadian period and phase. Surprisingly, lesions of the SCN in mPer2(Luciferase) knockin mice did not abolish circadian rhythms in peripheral tissues, but instead caused phase desynchrony among the tissues of individual animals and from animal to animal. These results demonstrate that peripheral tissues express self-sustained, rather than damped, circadian oscillations and suggest the existence of organ-specific synchronizers of circadian rhythms at the cell and tissue level.


Asunto(s)
Ritmo Circadiano/fisiología , Luciferasas/genética , Proteínas Nucleares/fisiología , Proteínas Recombinantes de Fusión/genética , Animales , Ritmo Circadiano/genética , Córnea/fisiología , Técnicas de Cultivo , Femenino , Riñón/fisiología , Hígado/fisiología , Luciferasas/metabolismo , Mediciones Luminiscentes , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Proteínas Nucleares/genética , Fenotipo , Hipófisis/fisiología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/fisiología , Núcleo Supraquiasmático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA