Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
3.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737699

RESUMEN

We describe an inertial rotation sensor with a 30-cm cylindrical proof-mass suspended from a pair of 14 µm thick BeCu flexures. The angle between the proof-mass and support structure is measured with a pair of homodyne interferometers, which achieve a noise level of ∼5prad/Hz. The sensor is entirely made of vacuum compatible materials, and the center of mass can be adjusted remotely.

4.
Aging Cell ; 22(6): e13846, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37147884

RESUMEN

As we age, our bones undergo a process of loss, often accompanied by muscle weakness and reduced physical activity. This is exacerbated by decreased responsiveness to mechanical stimulation in aged skeleton, leading to the hypothesis that decreased mechanical stimulation plays an important role in age-related bone loss. Piezo1, a mechanosensitive ion channel, is critical for bone homeostasis and mechanotransduction. Here, we observed a decrease in Piezo1 expression with age in both murine and human cortical bone. Furthermore, loss of Piezo1 in osteoblasts and osteocytes resulted in an increase in age-associated cortical bone loss compared to control mice. The loss of cortical bone was due to an expansion of the endosteal perimeter resulting from increased endocortical resorption. In addition, expression of Tnfrsf11b, encoding anti-osteoclastogenic protein OPG, decreases with Piezo1 in vitro and in vivo in bone cells, suggesting that Piezo1 suppresses osteoclast formation by promoting Tnfrsf11b expression. Our results highlight the importance of Piezo1-mediated mechanical signaling in protecting against age-associated cortical bone loss by inhibiting bone resorption in mice.


Asunto(s)
Enfermedades Óseas Metabólicas , Mecanotransducción Celular , Anciano , Animales , Humanos , Ratones , Huesos/metabolismo , Hueso Cortical/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo
5.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37191465

RESUMEN

Control noise is a limiting factor in the low-frequency performance of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). In this paper, we model the effects of using new sensors called Homodyne Quadrature Interferometers (HoQIs) to control the suspension resonances. We show that if we were to use HoQIs, instead of the standard shadow sensors, we could suppress resonance peaks up to tenfold more while simultaneously reducing the noise injected by the damping system. Through a cascade of effects, this will reduce the resonant cross-coupling of the suspensions, allow for improved stability for feed-forward control, and result in improved sensitivity of the detectors in the 10-20 Hz band. This analysis shows that improved local sensors, such as HoQIs, should be used in current and future detectors to improve low-frequency performance.

6.
Rev Sci Instrum ; 94(1): 014502, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725558

RESUMEN

Advanced Laser Interferometer Gravitational-wave Observatory (LIGO A+) is a major upgrade to LIGO-the Laser Interferometer Gravitational-wave Observatory. For the A+ project, we have developed, produced, and characterized sensors and electronics to interrogate new optical suspensions designed to isolate optics from vibrations. The central element is a displacement sensor with an integrated electromagnetic actuator known as a BOSEM (Birmingham Optical Sensor and ElectroMagnetic actuator) and its readout and drive electronics required to integrate them into LIGO's control and data system. In this paper, we report on the improvements to the sensors and the testing procedures undertaken to meet the enhanced performance requirements set out by the A+ upgrade to the detectors. The best devices reach a noise level of 4.5 ×10-11m/Hz at a measurement frequency of 1 Hz, an improvement of 6.7 times over standard devices.

8.
Braz J Med Biol Res ; 53(8): e9950, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32578721

RESUMEN

Pathophysiological mechanisms involved in orofacial pain and their relationship with emotional disorders have emerged as an important research area for multidisciplinary studies. In particular, temporomandibular disorders (TMD) have been evaluated clinically from both physiological and psychological perspectives. We hypothesized that an altered neuronal activity occurs in the amygdala and the dorsal raphe nucleus (DR), encephalic regions involved in the modulation of painful and emotional information. Adult male Wistar rats were used in an experimental complete Freund's adjuvant (CFA)-induced temporomandibular joint (TMJ) inflammation model. CFA was applied for 1 or 10 days, and the animals were euthanized for brain samples dissection for FosB/ΔFosB and parvalbumin (PV) immunostaining. Our results were consistent in showing that the amygdala and DR were activated in the persistent inflammatory phase (10 days) and that the expression of PV+ interneurons in the amygdala was decreased. In contrast, in the DR, the expression of PV+ interneurons was increased in persistent states of CFA-induced TMJ inflammation. Moreover, at 10 days of inflammation, there was an increased co-localization of PV+ and FosB/ΔFosB+ neurons in the basolateral and central nucleus of the amygdala. Different nuclei of the amygdala, as well as portions of the DR, were activated in the persistent phase (10 days) of TMJ inflammation. In conclusion, altered activity of the amygdala and DR was detected during persistent inflammatory nociception in the temporomandibular joint. These regions may be essential for both sensory and affective dimensions of orofacial pain.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Parvalbúminas/metabolismo , Articulación Temporomandibular/fisiología , Animales , Inflamación , Masculino , Neuronas , Ratas , Ratas Sprague-Dawley , Ratas Wistar
9.
Opt Express ; 28(7): 10253-10269, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32225614

RESUMEN

An accurate readout of low-power optical higher-order spatial modes is of increasing importance to the precision metrology community. Mode sensors are used to prevent mode mismatches from degrading quantum and thermal noise mitigation strategies. Direct mode analysis sensors (MODAN) are a promising technology for real-time monitoring of arbitrary higher-order modes. We demonstrate MODAN with photo-diode readout to mitigate the typically low dynamic range of CCDs. We look for asymmetries in the response of our sensor to break degeneracies in the relative alignment of the MODAN and photo-diode and consequently improve the dynamic range of the mode sensor. We provide a tolerance analysis and show methodology that can be applied for sensors beyond first order spatial modes.

10.
Behav Brain Res ; 378: 112237, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31525404

RESUMEN

Voluntary exercise increases stress resistance by modulating stress-responsive neurocircuitry, including brainstem serotonergic systems. However, it remains unknown how exercise produces adaptations to serotonergic systems. Recruitment of serotonergic systems during repeated, daily exercise could contribute to the adaptations in serotonergic systems following exercise, but whether repeated voluntary exercise recruits serotonergic systems is unknown. In this study, we investigated the effects of six weeks of voluntary or forced exercise on rat brain serotonergic systems. Specifically, we analyzed c-Fos and FosB/ΔFosB as markers of acute and chronic cellular activation, respectively, in combination with tryptophan hydroxylase, a marker of serotonergic neurons, within subregions of the dorsal raphe nucleus using immunohistochemical staining. Compared to sedentary controls, rats exposed to repeated forced exercise, but not repeated voluntary exercise, displayed decreased c-Fos expression in serotonergic neurons in the rostral dorsal portion of the dorsal raphe nucleus (DRD) and increased c-Fos expression in serotonergic neurons in the caudal DR (DRC), and interfascicular part of the dorsal raphe nucleus (DRI) during the active phase of the diurnal activity rhythm. Similarly, increases in c-Fos expression in serotonergic neurons in the DRC, DRI, and ventral portion of the dorsal raphe nucleus (DRV) were observed in rats exposed to repeated forced exercise, compared to rats exposed to repeated voluntary exercise. Six weeks of forced exercise, relative to the sedentary control condition, also increased FosB/ΔFosB expression in DRD, DRI, and DRV serotonergic neurons. While both voluntary and forced exercise increase stress resistance, these results suggest that repeated forced exercise, but not repeated voluntary exercise, increases activation of DRI serotonergic neurons, an effect that may contribute to the stress resistance effects of forced exercise. These results also suggest that mechanisms of exercise-induced stress resistance may differ depending on the controllability of the exercise.


Asunto(s)
Conducta Animal/fisiología , Actividad Motora/fisiología , Condicionamiento Físico Animal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleos del Rafe/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo , Animales , Inmunohistoquímica , Masculino , Ratas , Ratas Endogámicas F344
11.
Braz. j. med. biol. res ; 53(8): e9950, 2020. graf
Artículo en Inglés | LILACS, Coleciona SUS | ID: biblio-1132542

RESUMEN

Pathophysiological mechanisms involved in orofacial pain and their relationship with emotional disorders have emerged as an important research area for multidisciplinary studies. In particular, temporomandibular disorders (TMD) have been evaluated clinically from both physiological and psychological perspectives. We hypothesized that an altered neuronal activity occurs in the amygdala and the dorsal raphe nucleus (DR), encephalic regions involved in the modulation of painful and emotional information. Adult male Wistar rats were used in an experimental complete Freund's adjuvant (CFA)-induced temporomandibular joint (TMJ) inflammation model. CFA was applied for 1 or 10 days, and the animals were euthanized for brain samples dissection for FosB/ΔFosB and parvalbumin (PV) immunostaining. Our results were consistent in showing that the amygdala and DR were activated in the persistent inflammatory phase (10 days) and that the expression of PV+ interneurons in the amygdala was decreased. In contrast, in the DR, the expression of PV+ interneurons was increased in persistent states of CFA-induced TMJ inflammation. Moreover, at 10 days of inflammation, there was an increased co-localization of PV+ and FosB/ΔFosB+ neurons in the basolateral and central nucleus of the amygdala. Different nuclei of the amygdala, as well as portions of the DR, were activated in the persistent phase (10 days) of TMJ inflammation. In conclusion, altered activity of the amygdala and DR was detected during persistent inflammatory nociception in the temporomandibular joint. These regions may be essential for both sensory and affective dimensions of orofacial pain.


Asunto(s)
Animales , Masculino , Ratas , Parvalbúminas/metabolismo , Articulación Temporomandibular/fisiología , Núcleo Dorsal del Rafe/metabolismo , Amígdala del Cerebelo/metabolismo , Ratas Wistar , Ratas Sprague-Dawley , Inflamación , Neuronas
12.
Brain Behav Immun ; 80: 500-511, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31022457

RESUMEN

Overweight and obesity are a worldwide pandemic affecting billions of people. These conditions have been associated with a chronic low-grade inflammatory state that is recognized as a risk factor for a range of somatic diseases as well as neurodevelopmental disorders, anxiety disorders, trauma- and stressor-related disorders, and affective disorders. We previously reported that the ingestion of a high-fat diet (HFD; 45% fat kcal/g) for nine weeks was capable of inducing obesity in rats in association with increased reactivity to stress and increased anxiety-related defensive behavior. In this study, we conducted a nine-week diet protocol to induce obesity in rats, followed by investigation of anxiety-related defensive behavioral responses using the elevated T-maze (ETM), numbers of FOS-immunoreactive cells after exposure of rats to the avoidance or escape task of the ETM, and neuroinflammatory cytokine expression in hypothalamic and amygdaloid nuclei. In addition, we investigated stress-induced cutaneous thermoregulatory responses during exposure to an open-field (OF). Here we demonstrated that nine weeks of HFD intake induced obesity, in association with increased abdominal fat pad weight, increased anxiety-related defensive behavioral responses, and increased proinflammatory cytokines in hypothalamic and amygdaloid nuclei. In addition, HFD exposure altered avoidance- or escape task-induced FOS-immunoreactivity within brain structures involved in control of neuroendocrine, autonomic, and behavioral responses to aversive stimuli, including the basolateral amygdala (BLA) and dorsomedial (DMH), paraventricular (PVN) and ventromedial (VMH) hypothalamic nuclei. Furthermore, rats exposed to HFD, relative to control diet-fed rats, responded with increased tail skin temperature at baseline and throughout exposure to an open-field apparatus. These data are consistent with the hypothesis that HFD induces neuroinflammation, alters excitability of brain nuclei controlling neuroendocrine, autonomic, and behavioral responses to stressful stimuli, and enhances stress reactivity and anxiety-like defensive behavioral responses.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Dieta Alta en Grasa/efectos adversos , Neuroinmunomodulación/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/metabolismo , Trastornos de Ansiedad/metabolismo , Corticosterona , Hipotálamo/metabolismo , Masculino , Obesidad , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Aumento de Peso
13.
Curr Top Behav Neurosci ; 43: 271-321, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30357573

RESUMEN

Anxiety disorders and trauma- and stressor-related disorders, such as posttraumatic stress disorder (PTSD), are common and are associated with significant economic and social burdens. Although trauma and stressor exposure are recognized as a risk factors for development of anxiety disorders and trauma or stressor exposure is recognized as essential for diagnosis of PTSD, the mechanisms through which trauma and stressor exposure lead to these disorders are not well characterized. An improved understanding of the mechanisms through which trauma or stressor exposure leads to development and persistence of anxiety disorders or PTSD may result in novel therapeutic approaches for the treatment of these disorders. Here, we review the current state-of-the-art theories, with respect to mechanisms through which stressor exposure leads to acute or chronic exaggeration of avoidance or anxiety-like defensive behavioral responses and fear, endophenotypes in both anxiety disorders and trauma- and stressor-related psychiatric disorders. In this chapter, we will explore physiological responses and neural circuits involved in the development of acute and chronic exaggeration of anxiety-like defensive behavioral responses and fear states, focusing on the role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid hormones.


Asunto(s)
Ansiedad , Miedo , Trastornos de Ansiedad , Corticosterona , Glucocorticoides , Humanos , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Estrés Psicológico
14.
Neuropharmacology ; 148: 257-271, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30579884

RESUMEN

Caffeine is the most commonly used drug in the world. However, animal studies suggest that chronic consumption of caffeine during adolescence can result in enhanced anxiety-like behavioral responses during adulthood. One mechanism through which chronic caffeine administration may influence subsequent anxiety-like responses is through actions on brainstem serotonergic systems. In order to explore potential effects of chronic caffeine consumption on brainstem serotonergic systems, we evaluated the effects of a 28-day exposure to chronic caffeine (0.3 g/L; postnatal day 28-56) or vehicle administration in the drinking water, followed by 24 h caffeine withdrawal, and subsequent challenge with caffeine (30 mg/kg; s.c.) or vehicle in adolescent male rats. In Experiment 1, acute caffeine challenge induced a widespread activation of serotonergic neurons throughout the dorsal raphe nucleus (DR); this effect was attenuated in rats that had been exposed to chronic caffeine consumption. In Experiment 2, acute caffeine administration profoundly decreased tph2 and slc22a3 mRNA expression throughout the DR, with no effects on htr1a or slc6a4 mRNA expression. Chronic caffeine exposure for four weeks during adolescence was sufficient to decrease tph2 mRNA expression in the DR measured 28 h after caffeine withdrawal. Chronic caffeine administration during adolescence did not impact the ability of acute caffeine to decrease tph2 or slc22a3 mRNA expression. Together, these data suggest that both chronic caffeine administration during adolescence and acute caffeine challenge during adulthood are important determinants of serotonergic function and serotonergic gene expression, effects that may contribute to chronic effects of caffeine on anxiety-like responses.


Asunto(s)
Cafeína/farmacología , Núcleo Dorsal del Rafe/efectos de los fármacos , Neuronas Serotoninérgicas/efectos de los fármacos , Factores de Edad , Animales , Núcleo Dorsal del Rafe/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Masculino , Proteínas de Transporte de Catión Orgánico/biosíntesis , Ratas , Receptor de Serotonina 5-HT1A/biosíntesis , Proteínas de Transporte de Serotonina en la Membrana Plasmática/biosíntesis , Triptófano Hidroxilasa/biosíntesis
15.
Obes Sci Pract ; 4(5): 468-476, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30338117

RESUMEN

OBJECTIVES: Plasma nitrite is a metabolite of nitric oxide and reflects endogenous nitric oxide synthase (NOS) activity. Although plasma nitrites were previously linked with obesity and metabolic syndrome (MetS), the direction of association remains inconsistent, possibly due to sample heterogeneity. In a relatively homogeneous population, we hypothesized that nitrite levels will be positively associated with overweight/obesity and MetS. METHODS: Fasting nitrite levels were measured in 116 Old Order Amish (78% women). We performed age-and-sex-adjusted ancovas to compare nitrite levels between three groups (a) overweight/obese(-)MetS(-), (b) overweight/obese(+)MetS(-) and (c) overweight/obese(+)MetS)(+). Multivariate linear regressions were conducted on nitrite associations with continuous metabolic variables, with successive adjustments for demographics, body mass index, C-reactive protein and neopterin. RESULTS: Nitrite levels were higher in the obese/overweight(+)MetS(+) group than in the other two groups (p < 0.001). Nitrites were positively associated with levels of triglycerides (p < 0.0001), total cholesterol (p = 0.048), high-density lipoprotein/cholesterol ratio (p < 0.0001) and fasting glucose (p < 0.0001), and negatively correlated with high-density lipoprotein-cholesterol (p < 0.0001). These associations were robust to adjustments for body mass index and inflammatory markers. CONCLUSION: Further investigation of the connection between obesity/MetS and plasma nitrite levels may lead to novel dietary and pharmacological approaches that ultimately may contribute to reducing the increasing burden of obesity, MetS and cardiovascular morbidity and mortality.

16.
Gait Posture ; 60: 61-64, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29156379

RESUMEN

Joint Hypermobility Syndrome (JHS) in children, presents with increased joint range of motion and can lead to altered gait strategies and reduced dynamic balance. Despite limited evidence foot orthoses are sometimes prescribed to patients with JHS with the aim to improve the stability of their gait pattern and theoretically reduce associated symptoms of fatigue and joint pain. The purpose of this study was therefore to analyse the immediate effects of 'off the shelf' orthoses on temporospatial parameters of gait and dynamic balance in this cohort. METHODS: A total of 21 patients were recruited for the study (13 female) with a median age of 10 years (IRQ = 4.12). Each patient had their gait analysed using the GAITRite walkway in their own footwear and immediately after being prescribed the orthoses. Gait was tested at both the patients' preferred speed and when asked to walk slower to challenge their dynamic balance. RESULTS: Gait appeared more synchronised, with a reduction in step length and width variability, when participants were provided with orthotics. The variation was greatest when participants were asked to walk slower. Double stance was significantly less at slower speeds when orthotics were added (1.61%, 95% CI = 0.34, 2.89, p = 0.015) CONCLUSION: Results of this study indicate that orthotics have a definite immediate influence on gait patterns in patients with JHS. Future studies should investigate the long-term effects of orthotics in this population and include outcome measures for symptoms such as pain.


Asunto(s)
Ortesis del Pié , Pie/fisiología , Marcha/fisiología , Inestabilidad de la Articulación , Equilibrio Postural/fisiología , Caminata/fisiología , Adolescente , Niño , Preescolar , Femenino , Humanos , Inestabilidad de la Articulación/fisiopatología , Inestabilidad de la Articulación/rehabilitación , Masculino , Rango del Movimiento Articular/fisiología
17.
Rev Sci Instrum ; 88(11): 115008, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29195374

RESUMEN

In this paper, the sensor noise of two geophone configurations (L-22D and L-4C geophones from Sercel with custom built amplifiers) was measured by performing two huddle tests. It is shown that the accuracy of the results can be significantly improved by performing the huddle test in a seismically quiet environment and by using a large number of reference sensors to remove the seismic foreground signal from the data. Using these two techniques, the measured sensor noise of the two geophone configurations matched the calculated predictions remarkably well in the bandwidth of interest (0.01 Hz-100 Hz). Low noise operational amplifiers OPA188 were utilized to amplify the L-4C geophone to give a sensor that was characterized to be near Johnson noise limited in the bandwidth of interest with a noise value of 10-11 m/Hz at 1 Hz.

18.
Transl Psychiatry ; 7(10): e1246, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28972592

RESUMEN

Multiple lines of evidence implicate brain serotonin (5-hydroxytryptamine; 5-HT) system dysfunction in the pathophysiology of stressor-related and anxiety disorders. Here we investigate the influence of constitutively deficient 5-HT synthesis on stressor-related anxiety-like behaviors using Tryptophan hydroxylase 2 (Tph2) mutant mice. Functional assessment of c-Fos after associated foot shock, electrophysiological recordings of GABAergic synaptic transmission, differential expression of the Slc6a4 gene in serotonergic neurons were combined with locomotor and anxiety-like measurements in different contextual settings. Our findings indicate that constitutive Tph2 inactivation and consequential lack of 5-HT synthesis in Tph2 null mutant mice (Tph2-/-) results in increased freezing to associated foot shock and a differential c-Fos activity pattern in the basolateral complex of the amygdala. This is accompanied by altered GABAergic transmission as observed by recordings of inhibitory postsynaptic currents on principal neurons in the basolateral nucleus, which may explain increased fear associated with hyperlocomotion and escape-like responses in aversive inescapable contexts. In contrast, lifelong 5-HT deficiency as observed in Tph2 heterozygous mice (Tph+/-) is able to be compensated through reduced GABAergic transmission in the basolateral nucleus of the amygdala based on Slc6a4 mRNA upregulation in subdivisions of dorsal raphe neurons. This results in increased activity of the basolateral nucleus of the amygdala due to associated foot shock. In conclusion, our results reflect characteristic syndromal dimensions of panic disorder and agoraphobia. Thus, constitutive lack of 5-HT synthesis influence the risk for anxiety- and stressor-related disorders including panic disorder and comorbid agoraphobia through the absence of GABAergic-dependent compensatory mechanisms in the basolateral nucleus of the amygdala.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Ansiedad/fisiopatología , Reacción de Fuga , Trastorno de Pánico/fisiopatología , Serotonina/fisiología , Agorafobia/fisiopatología , Amígdala del Cerebelo/metabolismo , Animales , Electrochoque , Miedo , Potenciales Postsinápticos Inhibidores , Masculino , Ratones Noqueados , Núcleos del Rafe/metabolismo , Serotonina/deficiencia , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Triptófano Hidroxilasa/genética , Ácido gamma-Aminobutírico/metabolismo
19.
Transl Psychiatry ; 7(4): e1092, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28398339

RESUMEN

Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic-pituitary-adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio.


Asunto(s)
Modelos Animales de Enfermedad , Ideación Suicida , Prevención del Suicidio , Intento de Suicidio/prevención & control , Intento de Suicidio/psicología , Suicidio/psicología , Animales , Factores de Riesgo
20.
Int Rev Neurobiol ; 131: 289-323, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27793224

RESUMEN

It is increasingly evident that inflammation is an important determinant of cognitive function and emotional behaviors that are dysregulated in stress-related psychiatric disorders, such as anxiety and affective disorders. Inflammatory responses to physical or psychological stressors are dependent on immunoregulation, which is indicated by a balanced expansion of effector T-cell populations and regulatory T cells. This balance is in part driven by microbial signals. The hygiene or "old friends" hypothesis posits that exposure to immunoregulation-inducing microorganisms is reduced in modern urban societies, leading to an epidemic of inflammatory disease and increased vulnerability to stress-related psychiatric disorders. With the global trend toward urbanization, humans are progressively spending more time in built environments, thereby, experiencing limited exposures to these immunoregulatory "old friends." Here, we evaluate the implications of the global trend toward urbanization, and how this transition may affect human microbial exposures and human behavior.


Asunto(s)
Planificación Ambiental , Ambiente Controlado , Salud Mental , Microbiota/fisiología , Humanos , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...