Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Lancet Child Adolesc Health ; 8(1): 17-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000380

RESUMEN

BACKGROUND: Air pollution is the second largest risk to health in Africa, and children with asthma are particularly susceptible to its effects. Yet, there is a scarcity of air pollution exposure data from cities in sub-Saharan Africa. We aimed to identify potential exposure reduction strategies for school children with asthma living in urban areas in sub-Saharan Africa. METHODS: This personal exposure study was part of the Achieving Control of Asthma in Children in Africa (ACACIA) project. Personal exposure to particulate matter (PM) was monitored in school children in six cities in sub-Saharan Africa (Blantyre, Malawi; Durban, South Africa; Harare, Zimbabwe; Kumasi, Ghana; Lagos, Nigeria; and Moshi, Tanzania). Participants were selected if they were aged 12-16 years and had symptoms of asthma. Monitoring was conducted between June 21, and Nov 26, 2021, from Monday morning (approximately 1000 h) to Friday morning (approximately 1000 h), by use of a bespoke backpack with a small air pollution monitoring unit with an inbuilt Global Positioning System (GPS) data logger. Children filled in a questionnaire detailing potential sources of air pollution during monitoring and exposures were tagged into three different microenvironments (school, commute, and home) with GPS coordinates. Mixed-effects models were used to identify the most important determinants of children's PM2·5 (PM <2·5 µm in diameter) exposure. FINDINGS: 330 children were recruited across 43 schools; of these, 297 had valid monitoring data, and 1109 days of valid data were analysed. Only 227 (20%) of 1109 days monitored were lower than the current WHO 24 h PM2·5 exposure health guideline of 15 µg/m3. Children in Blantyre had the highest PM2·5 exposure (median 41·8 µg/m3), whereas children in Durban (16·0 µg/m3) and Kumasi (17·9 µg/m3) recorded the lowest exposures. Children had significantly higher PM2·5 exposures at school than at home in Kumasi (median 19·6 µg/m3vs 14·2 µg/m3), Lagos (32·0 µg/m3vs 18·0 µg/m3), and Moshi (33·1 µg/m3vs 23·6 µg/m3), while children in the other three cities monitored had significantly higher PM2·5 exposures at home and while commuting than at school (median 48·0 µg/m3 and 43·2 µg/m3vs 32·3 µg/m3 in Blantyre, 20·9 µg/m3 and 16·3 µg/m3vs 11·9 µg/m3 in Durban, and 22·7 µg/m3 and 25·4 µg/m3vs 16·4 µg/m3 in Harare). The mixed-effects model highlighted the following determinants for higher PM2·5 exposure: presence of smokers at home (23·0% higher exposure, 95% CI 10·8-36·4), use of coal or wood for cooking (27·1%, 3·9-56·3), and kerosene lamps for lighting (30·2%, 9·1-55·2). By contrast, 37·2% (95% CI 22·9-48·2) lower PM2·5 exposures were found for children who went to schools with paved grounds compared with those whose school grounds were covered with loose dirt. INTERPRETATION: Our study suggests that the most effective changes to reduce PM2·5 exposures in these cities would be to provide paving in school grounds, increase the use of clean fuel for cooking and light in homes, and discourage smoking within homes. The most efficient way to improve air quality in these cities would require tailored interventions to prioritise different exposure-reduction policies in different cities. FUNDING: UK National Institute for Health and Care Research.


Asunto(s)
Contaminación del Aire Interior , Asma , Niño , Humanos , Material Particulado/análisis , Ciudades , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente , Nigeria , Sudáfrica , Zimbabwe , Asma/epidemiología
3.
Ann Allergy Asthma Immunol ; 130(2): 199-205.e2, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36288782

RESUMEN

BACKGROUND: Air pollution is associated with poor asthma outcomes. High-efficiency particulate air air purifiers may reduce air pollution and thus improve asthma outcomes. However, the efficacy of such devices for this purpose remains inconclusive. OBJECTIVE: To investigate the effects of reducing the levels of pollutants on asthma outcomes in adults, using a novel Dyson high-efficiency particulate air air purifier. METHODS: In a single-center, double-blinded, randomized controlled trial, participants (N = 50) were randomized at a 1:1 ratio to active filters (intervention) or to dummy filters (placebo) for a total of 78 weeks. The primary outcomes were the changes in Asthma Control Questionnaire 6 (ACQ6) and Asthma-specific Quality of Life Questionnaire (AQLQ) scores from baseline. The secondary outcomes were changes in indoor air pollution and lung function measurements. The coronavirus disease 2019 pandemic limited spirometry measurements to 2 time points and assessment of fractional exhaled nitric oxide and bronchial hyperresponsiveness to baseline only. RESULTS: Air pollutant levels were significantly lower in the intervention group compared with the placebo group (P = .0003). Both groups had a significant improvement in their ACQ6 and AQLQ. However, there were no significant between-group differences in ACQ6, AQLQ, or spirometry, compared with baseline in multivariable repeated measures models. CONCLUSION: The Dyson air purifier significantly improved air quality. However, there were no significant improvements in asthma control, quality of life, or measures of lung function in the intervention group compared with the control group despite improvements in indoor air quality. Larger, extended studies are required to confirm or refute these findings, especially given that the coronavirus disease 2019 pandemic prevented the procurement of detailed objective data. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04729530; ttps://clinicaltrials.gov/ct2/show/NCT04729530.


Asunto(s)
Filtros de Aire , Contaminación del Aire Interior , Asma , COVID-19 , Adulto , Humanos , Calidad de Vida , Asma/tratamiento farmacológico , Contaminación del Aire Interior/análisis , Método Doble Ciego
4.
Sci Total Environ ; 838(Pt 3): 156431, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35660611

RESUMEN

Straw burning comprises more than 30% of all types of burned biomass in Asia, while the estimation of the emitted aerosols' direct radiative forcing effect suffers from large uncertainties, especially when atmospheric aging processes are considered. In this study, the light absorption properties of primary and aged straw burning aerosols in open fire were characterized at 7 wavelengths ranging from 370 nm to 950 nm in a chamber. The primary rice, corn and wheat straw burning bulk aerosols together had a mass absorption efficiency (MAE) of 2.43 ± 1.36 m2 g-1 at 520 nm and an absorption Ångström exponent (AAE) of 1.93 ± 0.71, while the primary sorghum straw burning bulk aerosols were characterized by a relatively lower MAE of 0.95 ± 0.54 m2 g-1 and a higher AAE of 4.80 ± 0.68. Both the MAE and AAE of primary aerosols can be well parameterized by the (PM-BC)/BC ratio (in wt.). The MAE of black carbon (BC) increased by 11-190% during photoreactions equivalent to 16-60 h of atmospheric aging, which was positively correlated with the (PM-BC)/(BC) ratio. The MAE of organic aerosols first slightly increased or leveled off, and then decreased. Specifically, at 370 nm, the first growth/plateau stage lasted until OH exposure reached 0.47-1.29 × 1011 molecule cm-3 s, and the following period exhibited decay rates of 1.0-2.8 × 10-12 cm3 molecule-1 s-1 against the OH radical, corresponding to half-lives of 46-134 h in a typical ambient condition. During photoreactions, competition among the lensing effect, growth/bleach of organic chromophores, and particle mass and size growth complicated the evolution of the direct radiative forcing effect. It is concluded that rice and corn straw burning aerosols maintained a warming effect after aging, while the cooling effect of fresh sorghum straw burning aerosols increased with aging.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Hollín/análisis
5.
Sci Total Environ ; 839: 156201, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623519

RESUMEN

One of the more important classes of potentially toxic indoor air chemicals are the Volatile Organic Compounds (VOCs). However, due to a limited understanding of the relationships between indoor concentrations of individual VOCs and health outcomes, there are currently no universal health-based guideline values for VOCs within Europe including the UK. In this study, a systematic search was conducted designed to capture evidence on concentrations, emissions from indoor sources, and health effects for VOCs measured in European residences. We identified 65 individual VOCs, and the most commonly measured were aromatic hydrocarbons (14 chemicals), alkane hydrocarbons (9), aldehydes (8), aliphatic hydrocarbons (5), terpenes (6), chlorinated hydrocarbons (4), glycol and glycol ethers (3) and esters (2). The pathway of interest was inhalation and 8 individual aromatic hydrocarbons, 7 alkanes and 6 aldehydes were associated with respiratory health effects. Members of the chlorinated hydrocarbon family were associated with cardiovascular neurological and carcinogenic health effects and some were irritants as were esters and terpenes. Eight individual aromatic hydrocarbons, 7 alkanes and 6 aldehydes identified in European residences were associated with respiratory health effects. Of the 65 individual VOCs, 52 were from sources associated with building and construction materials (e.g. brick, wood products, adhesives and materials for flooring installation etc.), 41 were linked with consumer products (passive, electric and combustible air fresheners, hair sprays, deodorants) and 9 VOCs were associated with space heating, which may reflect the relatively small number of studies discussing emissions from this category of sources. A clear decrease in concentrations of formaldehyde was observed over the last few years, whilst acetone was found to be one of the most abundant but underreported species. A new approach based on the operational indoor air quality surveillance will both reveal trends in known VOCs and identify new compounds.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Hidrocarburos Aromáticos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Aldehídos/análisis , Aldehídos/toxicidad , Alcanos , Monitoreo del Ambiente , Ésteres , Glicoles , Hidrocarburos/análisis , Terpenos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/toxicidad
6.
Environ Pollut ; 267: 115623, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254698

RESUMEN

Liquefied petroleum gas (LPG) as an alternative fuel is increasingly used in mainland China, few reports are however available about emissions from LPG-fueled vehicles. In this study, 26 LPG-fueled taxis in Guangzhou, south China were tested using a chassis dynamometer to obtain their emission factors of nitrogen oxides (NOx) and volatile organic compounds (VOCs) under idle and cruising (10-60 km h-1) modes. The emission factors of NOx on average increased with speed from 4.13 g kg-fuel-1 at idling to 71.1 g kg-fuel-1 at 60 km h-1 at a slope of 10.6 g kg-fuel-1 per 10 km h-1 increase in speed. Alkanes were the most abundant (71.9%) among the VOCs in the exhaust, followed by alkenes (25.2%), ethyne (2.7%), and aromatic species (0.2%). Emission factors of VOCs at idling averaged 8.24 g kg-fuel-1, higher than that of 6.23-7.36 g kg-fuel-1 when cruising at 10-60 km h-1, but their ozone formation potentials (OFPs) were lower at idling (15.8 g kg-fuel-1) than under cruising (19.1-23.8 g kg-fuel-1) largely due to higher emission of more reactive alkenes under cruising mode. Emissions of both NOx and VOCs increased significantly with mileages. Measured emission factors of NOx and reactive VOCs in this study suggested that replacing the gasoline-powered taxis with the LPG-fueled taxis with LPG-gasoline bi-fuel engines and no efficient after-treatment devices would not benefit in reducing the emissions of ozone precursors, and strengthening the emission control for LPG vehicles with dedicated LPG engines and after-treatment converters, as did in Hong Kong, could further benefit in reducing the emission of photochemically active species when using LPG as alternative fuels.


Asunto(s)
Contaminantes Atmosféricos , Petróleo , Compuestos Orgánicos Volátiles , China , Hong Kong , Óxidos de Nitrógeno , Emisiones de Vehículos
7.
Environ Int ; 144: 106001, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32739515

RESUMEN

More than 1 million premature deaths in Asia annually are estimated to be associated with indoor air quality. HEPA (high-efficiency particulate air) filter air purifiers (APs) are widely used in urban Chinese residences by the growing middle class, as public awareness of air pollution increases. Currently, understanding of how particle size affects particle removal is inconsistent, and the rate at which different particle types are removed remains largely unknown. Therefore, this investigation aimed to determine the relationship between particle size and the removal efficiency of particles, and how efficiently ambient air is filtered compared to particle types which are typically used in standard tests (tobacco smoke, dust and pollen). Three of the most popular AP models in China were tested in China's largest indoor controlled chamber laboratory and the removal efficiencies of particles in the 18-514 nm range were identified. Each AP had a distinct profile of removal efficiency against particle size, but the three APs shared similarities in performance, with removal efficiency consistently lowest at 200-250 nm. This size fraction is important in an exposure context as these particles are abundant in ambient air in mega-cities, can penetrate through building shells effectively, remain airborne for long periods of time and can penetrate the deepest areas of the lungs. Ambient air particles were removed at a similar rate to test particles; this confirms that the Association of Home Appliance Manufacturers' (AHAM) standards are a suitable proxy for "real world" performance.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Asia , China , Tamaño de la Partícula , Material Particulado
8.
Sci Total Environ ; 699: 134357, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31683211

RESUMEN

Diesel vehicle exhaust is an important source of carbonaceous aerosols, especially in developing countries, like China. Driving condition impacts diesel vehicle emissions, yet its influence needs further understanding especially on secondary organic aerosol (SOA) formation. In this study tailpipe exhaust from an in-use light duty diesel vehicle at idling and driving speeds of 20 and 40 km h-1 was introduced respectively into a 30 m-3 indoor smog chamber to investigate primary emissions and SOA formation during photo-oxidation. The emission factors of SO2 at 20 and 40 km h-1 were higher than those at idling, whereas the emission factors of aromatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs) and oxygenated volatile organic compounds (OVOCs) decreased when driving speeds increased. The emission factors of black carbon (BC) and primary organic aerosol (POA) at idling were comparable to those at 20 and 40 km h-1. The SOA production factors were 0.41 ±â€¯0.09 g kg-fuel-1 at idling, approximately 2.5 times as high as those at 20 km h-1 (0.16 ±â€¯0.09 g kg-fuel-1) or 40 km h-1 (0.17 ±â€¯0.09 g kg-fuel-1). Total carbonaceous aerosols, including BC, POA and SOA, from diesel vehicles at 20 and 40 km h-1 were 60-75% of those at idling, due largely to a reduction in SOA production. Measured AHs and PAHs altogether were estimated to explain <10% of SOA production, and eight major OVOCs could contribute 8.4-23% of SOA production. A preliminary comparison was further made for the same diesel vehicle at idling using diesel oils upgraded from China 3 to China 5 standard. The emission factors of total particle numbers decreased by 38% owing to less nuclei mode particles, which was probably caused by the reducing fuel sulfur content; the emission factors of BC were almost unchanged, the POA emission factors and SOA production factors however decreased by 72% and 37%.

9.
Environ Sci Technol ; 53(20): 11644-11656, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31512864

RESUMEN

Many populations spend ∼90% of their time indoors, with household particulate matter being linked to millions of premature deaths worldwide. Particulate matter is currently measured using particle mass, particle number, and particle size distribution metrics, with other metrics, such as particle surface area, likely to be of increasing importance in the future. Particulate mass is measured using gravimetric methods, tapered element oscillating microbalances, and beta attenuation instruments and is best suited to use in compliance monitoring, trend analysis, and high spatial resolution measurements. Particle number concentration is measured by condensation particle counters, optical particle counters, and diffusion chargers. Particle number measurements are best suited to source characterization, trend analysis and ultrafine particle investigations. Particle size distributions are measured by gravimetric impactors, scanning mobility particle sizers, aerodynamic particle sizers, and fast mobility particle sizers. Particle size distribution measurements are most useful in source characterization and particulate matter property investigations, but most measurement options remain expensive and intrusive. However, we are on the cusp of a revolution in indoor air quality monitoring and management. Low-cost sensors have potential to facilitate personalized information about indoor air quality (IAQ), allowing citizens to reduce exposures to PM indoors and to resolve potential dichotomies between promoting healthy IAQ and energy efficient buildings. Indeed, the low cost will put this simple technology in the hands of citizens who wish to monitor their own IAQ in the home or workplace, to inform lifestyle decisions. Low-cost sensor networks also look promising as the solution to measuring spatial distributions of PM indoors, however, there are important sensor/data quality, technological, and ethical barriers to address with this technology. An improved understanding of epidemiology is essential to identify which metrics correlate most with health effects, allowing indoor specific PM standards to be developed and to inform the future of experimental applications.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...