Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38794880

RESUMEN

BACKGROUND: Short-chain fatty acids (SCFAs), mainly acetate, propionate and butyrate, are produced by gut microbiota through fermentation of complex carbohydrates that cannot be digested by the human host. They affect gut health and can contribute at the distal level to the pathophysiology of several diseases, including renal pathologies. METHODS: SCFA levels were measured in chronic kidney disease (CKD) patients (n = 54) at different stages of the disease and associations with renal function and inflammation parameters were examined. The impact of propionate and butyrate in pathways triggered in tubular cells under inflammatory conditions was analysed using genome-wide expression assays. Finally, a pre-clinical mouse model of folic acid-induced transition from acute kidney injury to CKD was used to analyse the preventive and therapeutic potential of these microbial metabolites in the development of CKD. RESULTS: Faecal levels of propionate and butyrate in CKD patients gradually reduce as the disease progresses, and do so in close association with established clinical parameters for serum creatinine, blood urea nitrogen and the estimated glomerular filtration rate. Propionate and butyrate jointly downregulated the expression of 103 genes related to inflammatory processes and immune system activation triggered by TNF-α in tubular cells. In vivo, the administration of propionate and butyrate, either before or soon after injury, respectively prevented and slowed the progression of damage. This was indicated by a decrease in renal injury markers, the expression of pro-inflammatory and pro-fibrotic markers, and recovery of renal function over the long term. CONCLUSIONS: Propionate and butyrate levels are associated with a progressive loss of renal function in CKD patients. Early administration of these SCFAs prevents disease advancement in a pre-clinical model of acute renal damage, demonstrating their therapeutic potential independently of the gut microbiota.

2.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608019

RESUMEN

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células de Schwann , Animales , Ratones , Vaina de Mielina/genética , Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Procesamiento Proteico-Postraduccional
3.
J Cell Physiol ; 239(5): e31198, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38451745

RESUMEN

Liver sinusoidal endothelial cells (LSECs) dysfunction is a key process in the development of chronic liver disease (CLD). Progressive scarring increases liver stiffness in a winch-like loop stimulating a dysfunctional liver cell phenotype. Cellular stretching is supported by biomechanically modulated molecular factors (BMMFs) that can translocate into the cytoplasm to support mechanotransduction through cytoskeleton remodeling and gene transcription. Currently, the molecular mechanisms of stiffness-induced LSECs dysfunction remain largely unclear. Here we propose calcium- and integrin-binding protein 1 (CIB1) as BMMF with crucial role in LSECs mechanobiology in CLD. CIB1 expression and translocation was characterized in healthy and cirrhotic human livers and in LSECs cultured on polyacrylamide gels with healthy and cirrhotic-like stiffnesses. Following the modulation of CIB1 with siRNA, the transcriptome was scrutinized to understand downstream effects of CIB1 downregulation. CIB1 expression is increased in LSECs in human cirrhosis. In vitro, CIB1 emerges as an endothelial BMMF. In human umbilical vein endothelial cells and LSECs, CIB1 expression and localization are modulated by stiffness-induced trafficking across the nuclear membrane. LSECs from cirrhotic liver tissue both in animal model and human disease exhibit an increased amount of CIB1 in cytoplasm. Knockdown of CIB1 in LSECs exposed to high stiffness improves LSECs phenotype by regulating the intracellular tension as well as the inflammatory response. Our results demonstrate that CIB1 is a key factor in sustaining cellular tension and stretching in response to high stiffness. CIB1 downregulation ameliorates LSECs dysfunction, enhancing their redifferentiation, and reducing the inflammatory response.


Asunto(s)
Proteínas de Unión al Calcio , Células Endoteliales , Cirrosis Hepática , Hígado , Mecanotransducción Celular , Animales , Humanos , Masculino , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Femenino , Ratas , Ratas Sprague-Dawley
4.
iScience ; 27(3): 109283, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38450150

RESUMEN

Small nucleolar RNAs (snoRNAs) have been identified dysregulated in several pathologies, and these alterations can be detected in tissues and in circulation. The main aim of this study was to analyze the whole snoRNome in advanced colorectal neoplasms and to identify new potential non-invasive snoRNA-based biomarkers in fecal samples by different analytical approaches. SNORA51, SNORD15B, SNORA54, SNORD12B, SNORD12C, SNORD72, SNORD89, and several members of SNORD115 and SNORD116 clusters were consistently deregulated in both tissue sets. After technical validation, SNORA51 and SNORD15B were detected in FIT+ samples. SNORA51 was significantly upregulated in FIT+ samples from CRC patients compared to healthy controls. This upregulation, together with the fecal hemoglobin concentration, was sufficient to identify, among FIT+ individuals, patients with CRC (AUC = 0.86) and individuals with advanced adenomas (AUC = 0.68). These findings portray snoRNAs as an alternative source of candidates for further studies and SNORA51 appears as a potential non-invasive biomarker for CRC detection.

5.
Sci Rep ; 13(1): 18997, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923774

RESUMEN

Somatic single-nucleotide variants (SNVs) occur every time a cell divides, appearing even in healthy tissues at low frequencies. These mutations may accumulate as neutral variants during aging, or eventually, promote the development of neoplasia. Here, we present the SP-ddPCR, a droplet digital PCR (ddPCR) based approach that utilizes customized SuperSelective primers aiming at quantifying the proportion of rare SNVs. For that purpose, we selected five potentially pathogenic variants identified by whole-exome sequencing (WES) occurring at low variant allele frequency (VAF) in at-risk colon healthy mucosa of patients diagnosed with colorectal cancer or advanced adenoma. Additionally, two APC SNVs detected in two cancer lesions were added to the study for WES-VAF validation. SuperSelective primers were designed to quantify SNVs at low VAFs both in silico and in clinical samples. In addition to the two APC SNVs in colonic lesions, SP-ddPCR confirmed the presence of three out of five selected SNVs in the normal colonic mucosa with allelic frequencies ≤ 5%. Moreover, SP-ddPCR showed the presence of two potentially pathogenic variants in the distal normal mucosa of patients with colorectal carcinoma. In summary, SP-ddPCR offers a rapid and feasible methodology to validate next-generation sequencing data and accurately quantify rare SNVs, thus providing a potential tool for diagnosis and stratification of at-risk patients based on their mutational profiling.


Asunto(s)
Neoplasias , Humanos , Mutación , Cartilla de ADN , Colon , Reacción en Cadena de la Polimerasa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
6.
EBioMedicine ; 95: 104778, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37657135

RESUMEN

BACKGROUND: Dysregulated inflammatory responses and oxidative stress are key pathogenic drivers of chronic inflammatory diseases such as liver cirrhosis (LC). Regulatory T cells (Tregs) are essential to prevent excessive immune activation and maintain tissue homeostasis. While inflammatory cues are well known to modulate the function and stability of Tregs, the extent to which Tregs are influenced by oxidative stress has not been fully explored. METHODS: The phenotypic and functional properties of CD4+CD25+CD127lo/- Tregs isolated from patients with LC were compared to healthy controls (HC). Treg redox state was investigated by characterizing intracellular reactive oxygen species (ROS), NADPH oxidase-2 (Nox2) activity, mitochondrial function, morphology, and nuclear factor-erythroid 2-related factor (Nrf2) antioxidant signalling. The relevance of Nrf2 and its downstream target, Heme-oxygenase-1 (HO-1), in Treg function, stability, and survival, was further assessed using mouse models and CRISPR/Cas9-mediated HO-1 knock-out. FINDINGS: Circulating Tregs from LC patients displayed a reduced suppressive function, correlating with liver disease severity, associated with phenotypic abnormalities and increased apoptosis. Mechanistically, this was linked to a dysregulated Nrf2 signalling with resultant lower levels of HO-1, enhanced Nox2 activation, and impaired mitochondrial respiration and integrity. The functional deficit in LC Tregs could be partially recapitulated by culturing control Tregs in patient sera. INTERPRETATION: Our findings reveal that Tregs rely on functional redox homeostasis for their function, stability, and survival. Targeting Treg specific anti-oxidant pathways may have therapeutic potential to reverse the Treg impairment in conditions of oxidative damage such as advanced liver disease. FUNDING: This study was funded by the Wellcome Trust (211113/A/18/Z).


Asunto(s)
Antioxidantes , Hepatopatías , Animales , Ratones , Linfocitos T Reguladores , Factor 2 Relacionado con NF-E2 , Hepatopatías/etiología , Cirrosis Hepática
7.
Apunts, Med. esport (Internet) ; 58(219)July - September 2023.
Artículo en Inglés | IBECS | ID: ibc-223407

RESUMEN

Objective: Use of painkillers appears to have become a widespread issue in the sporting environment as athletes pursue successful pain relief during competitions. We conducted a systematic review on the prevalence of analgesics use in soccer, using literature from January 1980 to July 2021. Methods: The systematic review followed PRISMA guidelines. Studies were obtained from the Cochrane Library, PubMed, Scopus, and Web of Science (WOS) databases. In total, 213 articles were found where 14 were selected. The risk of bias was assessed using the NIH scale for prevalence studies and the PEDro quality scale for randomized control trials (RCTs). Results: Less than 3% of the literature were randomized studies (n=10 observational; n=4 double-blind trials) and only 2 studies included females. At least 54% of the research subjects consumed analgesic drugs during the course of their tournaments, and nearly half of them (39-67%) did so before each match, mostly in the form of non-steroidal anti-inflammatory drugs (NSAIDs) (15% of daily use). Conclusion: Given that short-term observational studies indicated high consumption of analgesics despite limited evidence of their pain control effectiveness, the question is raised whether this potential drug abuse affects the sexes at the same rates and in the same ways. Further investigation into these specific cohorts is needed. (AU)


Asunto(s)
Humanos , Analgésicos/administración & dosificación , Analgésicos/uso terapéutico , Fútbol , Dolor , Atletas , Prevalencia
8.
J Hepatol ; 79(4): 1025-1036, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37348790

RESUMEN

BACKGROUND & AIMS: Ductular reaction expansion is associated with poor prognosis in patients with advanced liver disease. However, the mechanisms promoting biliary cell proliferation are largely unknown. Here, we identify neutrophils as drivers of biliary cell proliferation and the defective wound-healing response. METHODS: The intrahepatic localization of neutrophils was evaluated in patients with chronic liver disease. Neutrophil dynamics were analyzed by intravital microscopy and neutrophil-labeling assays in DDC-treated mice. Neutrophil depletion or inhibition of recruitment was achieved using a Ly6g antibody or a CXCR1/2 inhibitor, respectively. Mice deficient in PAD4 (peptidyl arginine deiminase 4) and ELANE/NE (neutrophil elastase) were used to investigate the mechanisms underlying ductular reaction expansion. RESULTS: In this study we describe a population of ductular reaction-associated neutrophils (DRANs), which are in direct contact with biliary epithelial cells in chronic liver diseases and whose numbers increased in parallel with disease progression. We show that DRANs are immobilized at the site of ductular reaction for a prolonged period of time. In addition, liver neutrophils display a unique phenotypic and transcriptomic profile, showing a decreased phagocytic capacity and increased oxidative burst. Depletion of neutrophils or inhibition of their recruitment reduces DRANs and the expansion of ductular reaction, while mitigating liver fibrosis and angiogenesis. Mechanistically, neutrophils deficient in PAD4 and ELANE abrogate neutrophil-induced biliary cell proliferation, thus indicating the role of neutrophil extracellular traps and elastase release in ductular reaction expansion. CONCLUSIONS: Overall, our study reveals the accumulation of DRANs as a hallmark of advanced liver disease and a potential therapeutic target to mitigate ductular reaction and the maladaptive wound-healing response. IMPACT AND IMPLICATIONS: Our results indicate that neutrophils are highly plastic and can have an extended lifespan. Moreover, we identify a new role of neutrophils as triggers of expansion of the biliary epithelium. Overall, the results of this study indicate that ductular reaction-associated neutrophils (or DRANs) are new players in the maladaptive tissue-healing response in chronic liver injury and may be a potential target for therapeutic interventions to reduce ductular reaction expansion and promote tissue repair in advanced liver disease.


Asunto(s)
Hepatopatías , Neutrófilos , Animales , Ratones , Hígado , Proliferación Celular , Epitelio
9.
JHEP Rep ; 5(6): 100722, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37151732

RESUMEN

Background & Aims: Portal hypertension (PH) is a frequent and severe clinical syndrome associated with chronic liver disease. Considering the mechanobiological effects of hydrostatic pressure and shear stress on endothelial cells, we hypothesised that PH might influence the phenotype of liver sinusoidal endothelial cells (LSECs) during disease progression. The aim of this study was to investigate the effects of increased hydrodynamic pressure on LSECs and to identify endothelial-derived biomarkers of PH. Methods: Primary LSECs were cultured under normal or increased hydrodynamic pressure within a pathophysiological range (1 vs. 12 mmHg) using a microfluidic liver-on-a-chip device. RNA sequencing was used to identify pressure-sensitive genes, which were validated in liver biopsies from two independent cohorts of patients with chronic liver disease with PH (n = 73) and participants without PH (n = 23). Biomarker discovery was performed in two additional independent cohorts of 104 patients with PH and 18 patients without PH. Results: Transcriptomic analysis revealed marked deleterious effect of pathological pressure in LSECs and identified chromobox 7 (CBX7) as a key transcription factor diminished by pressure. Hepatic CBX7 downregulation was validated in patients with PH and significantly correlated with hepatic venous pressure gradient. MicroRNA 181a-5p was identified as pressure-induced upstream regulator of CBX7. Two downstream targets inhibited by CBX7, namely, E-cadherin (ECAD) and serine protease inhibitor Kazal-type 1 (SPINK1), were found increased in the bloodstream of patients with PH and were highly predictive of PH and clinically significant PH. Conclusions: We characterise the detrimental effects of increased hydrodynamic pressure on the sinusoidal endothelium, identify CBX7 as a pressure-sensitive transcription factor, and propose the combination of two of its reported products as biomarkers of PH. Impact and Implications: Increased pressure in the portal venous system that typically occurs during chronic liver disease (called portal hypertension) is one of the main drivers of related clinical complications, which are linked to a higher risk of death. In this study, we found that pathological pressure has a harmful effect on liver sinusoidal endothelial cells and identified CBX7 as a key protein involved in this process. CBX7 regulates the expression of E-cadherin and SPINK1, and consequently, measuring these proteins in the blood of patients with chronic liver disease allows the prediction of portal hypertension and clinically significant portal hypertension.

10.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066245

RESUMEN

Background and Aims: Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocytes markers and showing immature features. However, the mechanisms and the impact of hepatocyte dedifferentiation in liver disease are poorly understood. Methods: HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ALD). Hepatocyte- specific overexpression or deletion of CXCR4, and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. Results: Here we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness and cancer gene programs. CXCR4 pathway was highly enriched in HB cells, and correlated with disease severity and hepatocyte dedifferentiation. In vitro , CXCR4 was associated with biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased hepatocyte specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. Conclusions: This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. Lay summary: Here we describe that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis.

11.
Hepatol Res ; 53(8): 771-785, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37060575

RESUMEN

BACKGROUND & AIMS: Cell-derived small extracellular vesicles (sEVs) participate in cell-cell communication via the transfer of molecular cargo including selectively enriched microRNAs (miRNAs). Utilizing advances in sEV isolation and characterization, this study investigates the impact of liver injury and dysfunction on the circulating EV-miRNA profile. METHODS: High-throughput screening of 799 sEV-miRNAs isolated from plasma was performed in patients across a spectrum of liver disorders including compensated and decompensated chronic liver disease, acute-on-chronic liver failure (ACLF), and acute liver failure, in addition to healthy controls and those with severe sepsis. miRNA levels were compared with clinical and biochemical parameters, composite scores of liver disease, and patient outcomes. RESULTS: miRNA screening revealed the degree of hepatic dysfunction to be the main determinant of changes in circulating sEV-miRNA profile, with liver-specific miRNA-122 being among the most highly dysregulated in severe injury. Principal components analyses of the 215 differentially expressed miRNAs showed differing profiles, particularly among those with acute liver injury and ACLF. A distinct profile of dysregulated miRNA, but not circulating cytokines, was shown to characterize ACLF, with four consensus miRNAs identified-miR-320e, miR-374-5p, miR-202-3p, and miR-1910-5p. High miR-320e was associated with poorer 90-day survival (p = 0.014) and regulated the functional gene targets IK, RPS5, MANBAL, and PEBP1. CONCLUSIONS: This first comprehensive analysis to the best of our knowledge of patients with varying degrees and stages of liver failure demonstrates miRNA profiles specifically within the sEV compartment to be significantly altered in progressive liver disease and highlights the diagnostic and prognostic potential of sEV-miRNA in ACLF while also establishing downstream gene targets.

12.
J Hepatol ; 79(3): 728-740, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37088308

RESUMEN

BACKGROUND & AIMS: Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocyte markers and showing immature features. However, the mechanisms and impact of hepatocyte dedifferentiation in liver disease are poorly understood. METHODS: HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ArLD). Hepatocyte-specific overexpression or deletion of C-X-C motif chemokine receptor 4 (CXCR4), and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. RESULTS: Here, we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness, and cancer gene programs. The CXCR4 pathway was highly enriched in HB cells and correlated with disease severity and hepatocyte dedifferentiation. In vitro, CXCR4 was associated with a biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased the hepatocyte-specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. CONCLUSIONS: This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. IMPACT AND IMPLICATIONS: Here, we show that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis. Therefore, this study reveals the importance of preserving strict control over hepatocyte plasticity in order to preserve liver function and promote tissue repair.


Asunto(s)
Reprogramación Celular , Hepatitis Alcohólica , Animales , Ratones , Hepatitis Alcohólica/metabolismo , Hepatocitos/metabolismo , Inflamación/metabolismo , Hígado/patología
13.
EBioMedicine ; 91: 104555, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37054630

RESUMEN

BACKGROUND: Reprogramming of immunosuppressive tumor-associated macrophages (TAMs) presents an attractive therapeutic strategy in cancer. The aim of this study was to explore the role of macrophage CD5L protein in TAM activity and assess its potential as a therapeutic target. METHODS: Monoclonal antibodies (mAbs) against recombinant CD5L were raised by subcutaneous immunization of BALB/c mice. Peripheral blood monocytes were isolated from healthy donors and stimulated with IFN/LPS, IL4, IL10, and conditioned medium (CM) from different cancer cell lines in the presence of anti-CD5L mAb or controls. Subsequently, phenotypic markers, including CD5L, were quantified by flow cytometry, IF and RT-qPCR. Macrophage CD5L protein expression was studied in 55 human papillary lung adenocarcinoma (PAC) samples by IHC and IF. Anti-CD5L mAb and isotype control were administered intraperitoneally into a syngeneic Lewis Lung Carcinoma mouse model and tumor growth was measured. Tumor microenvironment (TME) changes were determined by flow cytometry, IHC, IF, Luminex, RNAseq and RT-qPCR. FINDINGS: Cancer cell lines CM induced an immunosuppressive phenotype (increase in CD163, CD206, MERTK, VEGF and CD5L) in cultured macrophages. Accordingly, high TAM expression of CD5L in PAC was associated with poor patient outcome (Log-rank (Mantel-Cox) test p = 0.02). We raised a new anti-CD5L mAb that blocked the immunosuppressive phenotype of macrophages in vitro. Its administration in vivo inhibited tumor progression of lung cancer by altering the intratumoral myeloid cell population profile and CD4+ T-cell exhaustion phenotype, thereby significantly modifying the TME and increasing the inflammatory milieu. INTERPRETATION: CD5L protein plays a key function in modulating the activity of macrophages and their interactions within the TME, which supports its role as a therapeutic target in cancer immunotherapy. FUNDING: For a full list of funding bodies, please see the Acknowledgements.


Asunto(s)
Neoplasias Pulmonares , Macrófagos , Animales , Humanos , Ratones , Línea Celular Tumoral , Inmunoterapia , Neoplasias Pulmonares/terapia , Macrófagos/metabolismo , Monocitos , Células Mieloides/patología , Microambiente Tumoral
14.
Gut ; 72(8): 1581-1591, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36788015

RESUMEN

BACKGROUND AND AIMS: Current prognostic scores of patients with acutely decompensated cirrhosis (AD), particularly those with acute-on-chronic liver failure (ACLF), underestimate the risk of mortality. This is probably because systemic inflammation (SI), the major driver of AD/ACLF, is not reflected in the scores. SI induces metabolic changes, which impair delivery of the necessary energy for the immune reaction. This investigation aimed to identify metabolites associated with short-term (28-day) death and to design metabolomic prognostic models. METHODS: Two prospective multicentre large cohorts from Europe for investigating ACLF and development of ACLF, CANONIC (discovery, n=831) and PREDICT (validation, n=851), were explored by untargeted serum metabolomics to identify and validate metabolites which could allow improved prognostic modelling. RESULTS: Three prognostic metabolites strongly associated with death were selected to build the models. 4-Hydroxy-3-methoxyphenylglycol sulfate is a norepinephrine derivative, which may be derived from the brainstem response to SI. Additionally, galacturonic acid and hexanoylcarnitine are associated with mitochondrial dysfunction. Model 1 included only these three prognostic metabolites and age. Model 2 was built around 4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, bilirubin, international normalised ratio (INR) and age. In the discovery cohort, both models were more accurate in predicting death within 7, 14 and 28 days after admission compared with MELDNa score (C-index: 0.9267, 0.9002 and 0.8424, and 0.9369, 0.9206 and 0.8529, with model 1 and model 2, respectively). Similar results were found in the validation cohort (C-index: 0.940, 0.834 and 0.791, and 0.947, 0.857 and 0.810, with model 1 and model 2, respectively). Also, in ACLF, model 1 and model 2 outperformed MELDNa 7, 14 and 28 days after admission for prediction of mortality. CONCLUSIONS: Models including metabolites (CLIF-C MET) reflecting SI, mitochondrial dysfunction and sympathetic system activation are better predictors of short-term mortality than scores based only on organ dysfunction (eg, MELDNa), especially in patients with ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Metoxihidroxifenilglicol , Humanos , Pronóstico , Estudios Prospectivos , Cirrosis Hepática/complicaciones , Inflamación/complicaciones , Metabolómica , Mitocondrias
15.
Hepatology ; 77(4): 1303-1318, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35788956

RESUMEN

BACKGROUND AND AIM: Injury to hepatocyte mitochondria is common in metabolic dysfunction-associated fatty liver disease. Here, we investigated whether changes in the content of essential fatty acid-derived lipid autacoids affect hepatocyte mitochondrial bioenergetics and metabolic efficiency. APPROACH AND RESULTS: The study was performed in transgenic mice for the fat-1 gene, which allows the endogenous replacement of the membrane omega-6-polyunsaturated fatty acid (PUFA) composition by omega-3-PUFA. Transmission electron microscopy revealed that hepatocyte mitochondria of fat-1 mice had more abundant intact cristae and higher mitochondrial aspect ratio. Fat-1 mice had increased expression of oxidative phosphorylation complexes I and II and translocases of both inner (translocase of inner mitochondrial membrane 44) and outer (translocase of the outer membrane 20) mitochondrial membranes. Fat-1 mice also showed increased mitofusin-2 and reduced dynamin-like protein 1 phosphorylation, which mediate mitochondrial fusion and fission, respectively. Mitochondria of fat-1 mice exhibited enhanced oxygen consumption rate, fatty acid ß-oxidation, and energy substrate utilization as determined by high-resolution respirometry, [1- 14 C]-oleate oxidation and nicotinamide adenine dinucleotide hydride/dihydroflavine-adenine dinucleotide production, respectively. Untargeted lipidomics identified a rich hepatic omega-3-PUFA composition and a specific docosahexaenoic acid (DHA)-enriched lipid fingerprint in fat-1 mice. Targeted lipidomics uncovered a higher content of DHA-derived lipid autacoids, namely resolvin D1 and maresin 1, which rescued hepatocytes from TNFα-induced mitochondrial dysfunction, and unblocked the tricarboxylic acid cycle flux and metabolic utilization of long-chain acyl-carnitines, amino acids, and carbohydrates. Importantly, fat-1 mice were protected against mitochondrial injury induced by obesogenic and fibrogenic insults. CONCLUSION: Our data uncover the importance of a lipid membrane composition rich in DHA and its lipid autacoid derivatives to have optimal hepatic mitochondrial and metabolic efficiency.


Asunto(s)
Ácidos Grasos Omega-3 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Conservación de los Recursos Energéticos , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Ácidos Grasos Omega-6/química , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Omega-6/farmacología , Ratones Transgénicos , Ácidos Grasos/metabolismo
16.
J Hepatol ; 78(1): 153-164, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087863

RESUMEN

BACKGROUND & AIMS: CD4+CD25+Foxp3+ regulatory T cells (Tregs) are essential to maintain immunological tolerance and have been shown to promote liver allograft tolerance in both rodents and humans. Low-dose IL-2 (LDIL-2) can expand human endogenous circulating Tregs in vivo, but its role in suppressing antigen-specific responses and promoting Treg trafficking to the sites of inflammation is unknown. Likewise, whether LDIL-2 facilitates the induction of allograft tolerance has not been investigated in humans. METHODS: We conducted a clinical trial in stable liver transplant recipients 2-6 years post-transplant to determine the capacity of LDIL-2 to suppress allospecific immune responses and allow for the complete discontinuation of maintenance immunosuppression (ClinicalTrials.gov NCT02949492). One month after LDIL-2 was initiated, those exhibiting at least a 2-fold increase in circulating Tregs gradually discontinued immunosuppression over a 4-month period while continuing LDIL-2 for a total treatment duration of 6 months. RESULTS: All participants achieved a marked and sustained increase in circulating Tregs. However, this was not associated with the preferential expansion of donor-reactive Tregs and did not promote the accumulation of intrahepatic Tregs. Furthermore, LDIL-2 induced a marked IFNγ-orchestrated transcriptional response in the liver even before immunosuppression weaning was initiated. The trial was terminated after the first 6 participants failed to reach the primary endpoint owing to rejection requiring reinstitution of immunosuppression. CONCLUSIONS: The expansion of circulating Tregs in response to LDIL-2 is not sufficient to control alloimmunity and to promote liver allograft tolerance, due, at least in part, to off-target effects that increase liver immunogenicity. Our trial provides unique insight into the mechanisms of action of immunomodulatory therapies such as LDIL-2 and their limitations in promoting alloantigen-specific effects and immunological tolerance. CLINICAL TRIALS REGISTRATION: The study is registered at ClinicalTrials.gov (NCT02949492). IMPACT AND IMPLICATIONS: The administration of low-dose IL-2 is an effective way of increasing the number of circulating regulatory T cells (Tregs), an immunosuppressive lymphocyte subset that is key for the establishment of immunological tolerance, but its use to promote allograft tolerance in the setting of clinical liver transplantation had not been explored before. In liver transplant recipients on tacrolimus monotherapy, low-dose IL-2 effectively expanded circulating Tregs but did not increase the number of Tregs with donor specificity, nor did it promote their trafficking to the transplanted liver. Low-dose IL-2 did not facilitate the discontinuation of tacrolimus and elicited, as an off-target effect, an IFNγ-orchestrated inflammatory response in the liver that resembled T cell-mediated rejection. These results, supporting an unexpected role for IL-2 in regulating the immunogenicity of the liver, highlight the need to carefully evaluate systemic immunoregulatory strategies with investigations that are not restricted to the blood compartment and involve target tissues such as the liver.


Asunto(s)
Linfocitos T Reguladores , Tolerancia al Trasplante , Humanos , Rechazo de Injerto/prevención & control , Interleucina-2/farmacología , Hígado , Tacrolimus/farmacología
17.
Sci Transl Med ; 14(669): eabo2628, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322627

RESUMEN

Promoting immune tolerance to transplanted organs can minimize the amount of immunosuppressive drugs that patients need to take, reducing lifetime risks of mortality and morbidity. Regulatory T cells (Tregs) are essential for immune tolerance, and preclinical studies have shown their therapeutic efficacy in inducing transplantation tolerance. Here, we report the results of a phase 1/2 trial (ARTEMIS, NCT02474199) of autologous donor alloantigen-reactive Treg (darTreg) therapy in individuals 2 to 6 years after receiving a living donor liver transplant. The primary efficacy endpoint was calcineurin inhibitor dose reduction by 75% with stable liver function tests for at least 12 weeks. Among 10 individuals who initiated immunosuppression withdrawal, 1 experienced rejection before planned darTreg infusion, 5 received darTregs, and 4 were not infused because of failure to manufacture the minimal infusible dose of 100 × 106 cells. darTreg infusion was not associated with adverse events. Two darTreg-infused participants reached the primary endpoint, but an insufficient number of recipients were treated for assessing the efficacy of darTregs. Mechanistic studies revealed generalized Treg activation, senescence, and selective reduction of donor reactivity after liver transplantation. Overall, the ARTEMIS trial features a design concept for evaluating the efficacy of Treg therapy in transplantation. The mechanistic insight gained from the study may help guide the design of future trials.


Asunto(s)
Trasplante de Hígado , Tolerancia al Trasplante , Humanos , Trasplante de Hígado/métodos , Linfocitos T Reguladores , Rechazo de Injerto/prevención & control , Donadores Vivos
18.
Cancers (Basel) ; 14(15)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35954418

RESUMEN

The inaccuracy of the current prognostic algorithms and the potential changes in the therapeutic management of localized ccRCC demands the development of an improved prognostic model for these patients. To this end, we analyzed whole-transcriptome profiling of 26 tissue samples from progressive and non-progressive ccRCCs using Illumina Hi-seq 4000. Differentially expressed genes (DEG) were intersected with the RNA-sequencing data from the TCGA. The overlapping genes were used for further analysis. A total of 132 genes were found to be prognosis-related genes. LASSO regression enabled the development of the best prognostic six-gene panel. Cox regression analyses were performed to identify independent clinical prognostic parameters to construct a combined nomogram which includes the expression of CERCAM, MIA2, HS6ST2, ONECUT2, SOX12, TMEM132A, pT stage, tumor size and ISUP grade. A risk score generated using this model effectively stratified patients at higher risk of disease progression (HR 10.79; p < 0.001) and cancer-specific death (HR 19.27; p < 0.001). It correlated with the clinicopathological variables, enabling us to discriminate a subset of patients at higher risk of progression within the Stage, Size, Grade and Necrosis score (SSIGN) risk groups, pT and ISUP grade. In summary, a gene expression-based prognostic signature was successfully developed providing a more precise assessment of the individual risk of progression.

19.
JHEP Rep ; 4(6): 100482, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35540106

RESUMEN

Background & Aims: The molecular mechanisms driving the progression from early-chronic liver disease (CLD) to cirrhosis and, finally, acute-on-chronic liver failure (ACLF) are largely unknown. Our aim was to develop a protein network-based approach to investigate molecular pathways driving progression from early-CLD to ACLF. Methods: Transcriptome analysis was performed on liver biopsies from patients at different liver disease stages, including fibrosis, compensated cirrhosis, decompensated cirrhosis and ACLF, and control healthy livers. We created 9 liver-specific disease-related protein-protein interaction networks capturing key pathophysiological processes potentially related to CLD. We used these networks as a framework and performed gene set-enrichment analysis (GSEA) to identify dynamic gene profiles of disease progression. Results: Principal component analyses revealed that samples clustered according to the disease stage. GSEA of the defined processes showed an upregulation of inflammation, fibrosis and apoptosis networks throughout disease progression. Interestingly, we did not find significant gene expression differences between compensated and decompensated cirrhosis, while ACLF showed acute expression changes in all the defined liver disease-related networks. The analyses of disease progression patterns identified ascending and descending expression profiles associated with ACLF onset. Functional analyses showed that ascending profiles were associated with inflammation, fibrosis, apoptosis, senescence and carcinogenesis networks, while descending profiles were mainly related to oxidative stress and genetic factors. We confirmed by qPCR the upregulation of genes of the ascending profile and validated our findings in an independent patient cohort. Conclusion: ACLF is characterized by a specific hepatic gene expression pattern related to inflammation, fibrosis, apoptosis, senescence and carcinogenesis. Moreover, the observed profile is significantly different from that of compensated and decompensated cirrhosis, supporting the hypothesis that ACLF should be considered a distinct entity. Lay summary: By using transjugular biopsies obtained from patients at different stages of chronic liver disease, we unveil the molecular pathogenic mechanisms implicated in the progression of chronic liver disease to cirrhosis and acute-on-chronic liver failure. The most relevant finding in this study is that patients with acute-on-chronic liver failure present a specific hepatic gene expression pattern distinct from that of patients at earlier disease stages. This gene expression pattern is mostly related to inflammation, fibrosis, angiogenesis, and senescence and apoptosis pathways in the liver.

20.
Clin Transl Gastroenterol ; 13(7): e00489, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35404333

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is a potentially life-threatening complication of long-standing ulcerative colitis (UC). MicroRNAs (miRNA) are epigenetic regulators that have been involved in the development of UC-associated CRC. However, their role as potential mucosal biomarkers of neoplastic progression has not been adequately studied. METHODS: In this study, we analyzed the expression of 96 preselected miRNAs in human formalin-fixed and paraffin-embedded tissue of 52 case biopsies (20 normal mucosa, 20 dysplasia, and 12 UC-associated CRCs) and 50 control biopsies (10 normal mucosa, 21 sporadic adenomas, and 19 sporadic CRCs) by using Custom TaqMan Array Cards. For validation of deregulated miRNAs, we performed individual quantitative real-time polymerase chain reaction in an independent cohort of 50 cases (13 normal mucosa, 25 dysplasia, and 12 UC-associated CRCs) and 46 controls (7 normal mucosa, 19 sporadic adenomas, and 20 sporadic CRCs). RESULTS: Sixty-four miRNAs were found to be differentially deregulated in the UC-associated CRC sequence. Eight of these miRNAs were chosen for further validation. We confirmed miR-31, -106a, and -135b to be significantly deregulated between normal mucosa and dysplasia, as well as across the UC-associated CRC sequence (all P < 0.01). Notably, these miRNAs also confirmed to have a significant differential expression compared with sporadic CRC (all P < 0.05). DISCUSSION: UC-associated and sporadic CRCs have distinct miRNA expression patterns, and some miRNAs indicate early neoplastic progression.


Asunto(s)
Adenoma , Colitis Ulcerosa , MicroARNs , Adenoma/complicaciones , Adenoma/diagnóstico , Adenoma/genética , Biomarcadores/metabolismo , Colitis Ulcerosa/complicaciones , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...