Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37893537

RESUMEN

Background and Objectives: Growing antibiotic resistance among bacteria is a global issue that is becoming harder and more expensive to solve. Traditional treatment options are becoming less effective, causing more fatal outcomes of nosocomial infections. Since the development of new antibiotics has stagnated in the last decade, a novel approach is needed. Materials and Methods: Graphene-based materials are being developed and tested for various applications, and the medical field is no exception. We tested 98 clinical A. baumannii strains for antibiotic resistance, AMP-C production and the effectiveness of a graphene oxide and silver nanoparticle hybrid nanocomposite. The disc diffusion method was used to determine antibiotic susceptibility results. Antibiotic discs containing cefotaxime, cloxacillin and clavulanate were used to detect AMP-C production. The effectiveness of the GO-Ag hybrid nanocomposite was determined by counting colony forming units (CFUs) after a suspension of A. baumannii and the GO-Ag hybrid nanocomposite was plated on MH agar and incubated overnight to grow colonies. Results: In our research, we found that A. baumannii strains are resistant to the majority of commonly used antibiotics. Antibiotic resistance levels and AMP-C production can be factors, indicating the better effectiveness of the graphene oxide and silver nanoparticle hybrid nanocomposite. Conclusions: In this study, a GO-Ag hybrid nanocomposite was shown to have the potential to fight even the most problematic bacteria like A. baumannii.


Asunto(s)
Acinetobacter baumannii , Grafito , Nanopartículas del Metal , Humanos , Grafito/farmacología , Plata/farmacología , Plata/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Prevalencia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Microbiana
2.
Int J Nanomedicine ; 15: 5147-5163, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32764942

RESUMEN

BACKGROUND: In the last decades, nosocomial infections caused by drug-resistant Pseudomonas aeruginosa became a common problem in healthcare facilities. Antibiotics are becoming less effective as new resistant strains appear. Therefore, the development of novel enhanced activity antibacterial agents becomes very significant. A combination of nanomaterials with different physical and chemical properties enables us to generate novel multi-functional derivatives. In this study, graphene oxide and polyvinylpyrrolidone-stabilized silver nanoparticles hybrid nanocomposite (GO-Ag HN) were synthesized. The relation between antibiotic resistance and GO-Ag HN potential toxicity to clinical P. aeruginosa strains, their antibiotic resistance, and molecular mechanisms were assessed. METHODS: Chemical state, particle size distribution, and morphology of synthesized GO-Ag NH were investigated using spectroscopy and microscopy techniques (UV-Vis, FTIR, XPS, TEM, SEM, AFM). Broad-spectrum antibiotic resistance of P. aeruginosa strains was determined using E-test. Antibiotic resistance genes were identified using polymerase chain reaction (PCR). RESULTS: In this study, the toxicity of the GO-Ag NH to the isolated clinical P. aeruginosa strains has been investigated. A high antibiotic resistance level (92%) was found among P. aeruginosa strains. The most prevalent antibiotic resistance gene among tested strains was the AMPC beta-lactamase gene (65.6%). UV-vis, FTIR, and XPS studies confirmed the formation of the silver nanoparticles on the GO nanosheets. The functionalization process occurred through the interaction between Ag nanoparticles, GO, and polyvinylpyrrolidone used for nanoparticle stabilization. SEM analysis revealed that GO nanosheets undergo partial fragmentation during hybrid nanocomposite preparation, which remarkably increases the number of sharp edges and their mediated cutting effect. TEM analysis showed that GO-Ag HN spherical Ag nanoparticles mainly 9-12 nm in size were irregularly precipitated on the GO nanosheet surface. A higher density of Ag NPs was observed in the sheets' wrinkles, corrugations, and sharp edges. This hybrid nanocomposite poses enhanced antibacterial activity against carbapenem-resistant P. aeruginosa strains through a possible synergy between toxicity mechanisms of GO nanosheets and Ag nanoparticles. With incubation time increasing up to 10 minutes, the survival of P. aeruginosa decreased significantly. CONCLUSION: A graphene oxide and silver nanoparticles hybrid composite has been shown to be a promising material to control nosocomial infections caused by bacteria strains resistant to most antibiotics.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Grafito/química , Grafito/farmacología , Nanopartículas del Metal/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Plata/química , Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA