Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38137543

RESUMEN

Chronic inflammation and elevated cytokine levels are closely associated with the progression of chronic kidney disease (CKD), which is responsible for the manifestation of numerous complications and mortality. In addition to conventional CKD therapies, the possibility of using natural compounds with anti-inflammatory potential has attracted widespread attention in scientific research. This study aimed to study the potential anti-inflammatory effects of a natural oil compound, farnesol, in primary human renal proximal tubule epithelial cell (RPTEC) culture. Farnesol was encapsulated in lipid-based small unilamellar vesicles (SUVs) to overcome its insolubility in cell culture medium. The cell attachment of empty vesicles (SUVs) and farnesol-loaded vesicles (farnesol-SUVs) was examined using BODIPY, a fluorescent dye with hydrophobic properties. Next, we used multiple protein, RNA, and protein phosphorylation arrays to investigate the impact of farnesol on inflammatory signaling in RPTECs. The results indicated that farnesol inhibits TNF-α/IL-1ß-induced phosphorylation of the PI3 kinase p85 subunit and subsequent transcriptional activation of the inflammatory genes TNFRSF9, CD27, TNFRSF8, DR6, FAS, IL-7, and CCL2. Therefore, farnesol may be a promising natural compound for treating CKD.

2.
Sci Rep ; 13(1): 18802, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914766

RESUMEN

Medin is a common vascular amyloidogenic peptide recently implicated in Alzheimer's disease (AD) and vascular dementia and its pathology remains unknown. We aim to identify changes in transcriptomic profiles and pathways in human brain microvascular endothelial cells (HBMVECs) exposed to medin, compare that to exposure to ß-amyloid (Aß) and evaluate protection by monosialoganglioside-containing nanoliposomes (NL). HBMVECs were exposed for 20 h to medin (5 µM) without or with Aß(1-42) (2 µM) or NL (300 µg/mL), and RNA-seq with signaling pathway analyses were performed. Separately, reverse transcription polymerase chain reaction of select identified genes was done in HBMVECs treated with medin (5 µM) without or with NFκB inhibitor RO106-9920 (10 µM) or NL (300 µg/mL). Medin caused upregulation of pro-inflammatory genes that was not aggravated by Aß42 co-treatment but reversed by NL. Pathway analysis on differentially expressed genes revealed multiple pro-inflammatory signaling pathways, such as the tumor necrosis factor (TNF) and the nuclear factor-κB (NFkB) signaling pathways, were affected specifically by medin treatment. RO106-9920 and NL reduced medin-induced pro-inflammatory activation. Medin induced endothelial cell pro-inflammatory signaling in part via NFκB that was reversed by NL. This could have potential implications in the pathogenesis and treatment of vascular aging, AD and vascular dementia.


Asunto(s)
Enfermedad de Alzheimer , Demencia Vascular , Humanos , Envejecimiento/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Demencia Vascular/metabolismo , Células Endoteliales/metabolismo , Transcriptoma
3.
Biology (Basel) ; 11(5)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35625428

RESUMEN

There is a substantial unmet need for the treatment of skeletal muscle mass loss that is associated with aging and obesity-related increases in FFA. Unsaturated FFAs stimulate the inflammatory gene expression in human skeletal myoblasts (SkMs). Farnesol is a hydrophobic acyclic sesquiterpene alcohol with potential anti-inflammatory effects. Here, we created farnesol-loaded small unilamellar (SUVs) or multilamellar lipid-based vesicles (MLVs), and investigated their effects on inflammatory gene expression in primary human skeletal myoblasts. The attachment of SUVs or MLVs to SkMs was tracked using BODIPY, a fluorescent lipid dye. The data showed that farnesol-loaded SUVs reduced FFA-induced IL6 and LIF expression by 77% and 70% in SkMs, respectively. Farnesol-loaded MLVs were less potent in inhibiting FFA-induced IL6 and LIF expression. In all experiments, equal concentrations of free farnesol did not exert significant effects on SkMs. This report suggests that farnesol, if efficiently directed into myoblasts through liposomes, may curb FFA-induced inflammation in human skeletal muscle.

4.
Stroke ; 53(2): e37-e41, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34743535

RESUMEN

BACKGROUND AND PURPOSE: Neuroprotective strategies for stroke remain inadequate. Nanoliposomes comprised of phosphatidylcholine, cholesterol, and monosialogangliosides (nanoliposomes) induced an antioxidant protective response in endothelial cells exposed to amyloid insults. We tested the hypotheses that nanoliposomes will preserve human neuroblastoma (SH-SY5Y) and human brain microvascular endothelial cells viability following oxygen-glucose deprivation (OGD)-reoxygenation and will reduce injury in mice following middle cerebral artery occlusion. METHODS: SH-SY5Y and human brain microvascular endothelial cells were exposed to oxygen-glucose deprivation-reoxygenation (3 hours 0.5%-1% oxygen and glucose-free media followed by 20-hour ambient air/regular media) without or with nanoliposomes (300 µg/mL). Viability was measured (calcein-acetoxymethyl fluorescence) and protein expression of antioxidant proteins HO-1 (heme oxygenase-1), NQO1 (NAD[P]H quinone dehydrogenase 1), and SOD1 (superoxide dismutase 1) were measured by Western blot. C57BL/6J mice were treated with saline (n=8) or nanoliposomes (10 mg/mL lipid, 200 µL, n=7) while undergoing 60-minute middle cerebral artery occlusion followed by reperfusion. Day 2 postinjury neurological impairment score and infarction size were compared. RESULTS: SH-SY5Y and human brain microvascular endothelial cells showed reduced viability post-oxygen-glucose deprivation-reoxygenation that was reversed by nanoliposomes. Nanoliposomes increased protein expressions of HO-1, NQO1 in both cell types and SOD1 in human brain microvascular endothelial cells. Nanoliposomes-treated mice showed reduced neurological impairment and brain infarct size (18.8±2% versus 27.3±2.3%, P=0.017) versus controls. CONCLUSIONS: Nanoliposomes reduced stroke injury in mice subjected to middle cerebral artery occlusion likely through induction of an antioxidant protective response. Nanoliposome is a candidate novel agent for stroke.


Asunto(s)
Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Liposomas/uso terapéutico , Nanopartículas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Antioxidantes/metabolismo , Línea Celular , Endotelio Vascular/patología , Glucosa/deficiencia , Hemo-Oxigenasa 1/biosíntesis , Hemo-Oxigenasa 1/genética , Humanos , Hipoxia , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Masculino , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Microvasos/patología , NAD(P)H Deshidrogenasa (Quinona)/biosíntesis , NAD(P)H Deshidrogenasa (Quinona)/genética , Daño por Reperfusión/patología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología , Superóxido Dismutasa-1/biosíntesis , Superóxido Dismutasa-1/genética
5.
J Vet Pharmacol Ther ; 45(1): 63-68, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34747024

RESUMEN

This study aimed to investigate pharmacokinetics of fluoxetine in horses and validate a method for liquid chromatography mass spectrometry analysis of serum levels. Fluoxetine pharmacokinetics were determined using 10 healthy, adult horses. Fluoxetine pharmacokinetics following a single oral dose (0.25 mg/kg) were determined using blood samples collected prior to and at several time points over 7 days following administration. Serum concentrations of fluoxetine and its bioactive metabolite norfluoxetine were measured using liquid chromatography coupled to an accurate mass/high-resolution mass spectrometer. Pharmacokinetic parameters were estimated using a noncompartmental model. Time to maximum serum concentration and serum half-life of fluoxetine was 1.5 and 15.6 h, respectively. Steady-state serum concentrations were evaluated using five horses each receiving fluoxetine (0.25 mg/kg, PO, q24hrs) for 8 weeks and were found to be 62.9 ± 25.5 ng/ml on average. Norfluoxetine was not detected in any sample.


Asunto(s)
Fluoxetina , Administración Oral , Animales , Cromatografía Liquida/veterinaria , Semivida , Caballos , Espectrometría de Masas/veterinaria
6.
Methods Mol Biol ; 2275: 13-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34118029

RESUMEN

DQAsomes (dequalinium-based liposome-like vesicles) are the prototype for all mitochondria-targeted vesicular pharmaceutical nanocarrier systems. First described in 1998 in a paper which has been cited as of May 2020 over 150 times, DQAsomes have been successfully explored for the delivery of DNA and low-molecular weight molecules to mitochondria within living mammalian cells. Moreover, they also appear to have triggered the design and development of a large variety of similar mitochondria-targeted nanocarriers . Potential areas of application of DQAsomes and of related mitochondria-targeted pharmaceutical nanocarriers involve mitochondrial gene therapy , antioxidant and updated therapy as well as apoptosis-based anticancer chemotherapy. Here, detailed protocols for the preparation, characterization, and application of DQAsomes are given and most recent developments involving the design and use of DQAsome-related particles are highlighted and discussed.


Asunto(s)
ADN/síntesis química , Decualinio/química , Mitocondrias/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , ADN/química , ADN/farmacología , Portadores de Fármacos , Diseño de Fármacos , Terapia Genética , Humanos , Liposomas , Peso Molecular , Nanopartículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...