Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 272: 83-91, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30316195

RESUMEN

This study explored the effects of co-composting of lincomycin mycelia dregs (LMDs) with furfural slag on variations in antibiotic resistance genes (ARGs) and the bacterial community. The results showed that more than 99% lincomycin was reduced after composting. Moreover, the total absolute and relative abundance of ARGs increased by 180 and 5 times, respectively. The gene lnuA was detected in the LMDs compost and it was proved to participate in lincomycin biodegradation based on the analysis of Pearson's correlation and the lincomycin degradation byproducts. Redundancy analysis showed the succession of the bacterial community had a greater influence than the environmental parameters (residual lincomycin, C/N, pH and temperature) on the variation of ARGs during composting. Composting was not effective in reducing most of the ARGs and intI1 and thus the LMDs compost is dangerous to the ecological environment.


Asunto(s)
Compostaje , Farmacorresistencia Microbiana , Furaldehído/metabolismo , Lincomicina/metabolismo , Microbiota , Antibacterianos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Temperatura
2.
Huan Jing Ke Xue ; 39(10): 4817-4824, 2018 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-30229632

RESUMEN

Aerobic composting experiments were conducted using lincomycin mycelia wastes (dreg) and manure (T), using sewage sludge with manure as a control (CK). High performance liquid phase methods and high throughput sequencing were used to determine the concentration of lincomycin residue and to characterize the microbial community. The results showed that lincomycin was reduced significantly, with the concentration decreasing from 1800 mg·kg-1 to 483 mg·kg-1, accounting for 73% degradation. In addition, the bacterial community abundance and diversity indices were all lower than that of sludge-manure at the mesophilic and thermophilic phases, because of the high concentration of lincomycin residue in lincomycin mycelia dreg. By contrast, the fungal community abundance and diversity indices showed the reverse, due to the high content of organic matter and nitrogen in lincomycin mycelia dreg. Therefore, the microbial communities were greatly different between T and CK treatment with the domain genera of Paucisalibacillus, Cerasibacillus, Bacillus, Virgibacillus, Ureibacillus, Paenibacillus, and Sinibacillus in T compost and Truepera, Actinomadura, Pseudosphingobacterium, Pseudomonas, Luteimonas and Ureibacillus in CK compost. However, as the composting continued to a mature phase, most of the lincomycin was reduced, and the differences between the two microbial communities gradually decreased. This showed that composting could make lincomycin mycelia dreg harmless and could be used to turn it into a resource.


Asunto(s)
Bacterias/clasificación , Compostaje , Lincomicina/metabolismo , Estiércol/microbiología , Microbiología del Suelo , Aguas del Alcantarillado , Suelo
3.
Bioresour Technol ; 265: 155-162, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29890440

RESUMEN

This paper investigated the effect of co-composting of lincomycin mycelia dregs (LMDs) with furfural slag on the degradation of lincomycin, maturity and microbial communities. Results showed that after 66 days composting, the concentration of lincomycin was removed above 99%. The final pH, C/N and germination index (GI) all met the national standards in maturity. Enumeration of total cultivable microbes showed the composting process was not inhibited by the addition of LMDs. Microbial diversity suggested that co-composting was beneficial to increase the abundance and diversity of bacterial communities for LMDs' treatment. Canonical correlation analysis (CCA) indicated the bacteria communities were strongly affected by residual lincomycin, with lincomycin reduced greatly, microbial communities of T and CK became similar at the end of composting. The potential bacteria to degrade lincomycin were Anaerococcus, Peptostreptococcus, and Lactobacillus. Based on these results, this research indicated that the co-composting was a feasible treatment for LMDs.


Asunto(s)
Bacterias , Compostaje , Lincomicina , Furaldehído , Aguas del Alcantarillado , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...