Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 930: 172722, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38677441

RESUMEN

Inland waters (IW), estuarine areas (EA), and offshore areas (OA) function as aquatic systems in which the transport of carbon components results in the release of greenhouse gases (GHGs). Interconnected subsystems exhibit a greater greenhouse effect than individual systems. Despite this, there is a lack of research on how carbon loading and its components impact GHG emissions in various aquatic systems. In this study, we analyzed 430 aquatic sites to explore trade-off mechanisms among dissolved organic carbon (DOC), particulate organic carbon, dissolved inorganic carbon (DIC), and GHGs. The results revealed that IW emerged as the most significant GHG source, possessing a comprehensive global warming potential (GWP) of 0.78 ± 0.08 (10-2 Pg CO2-ep ha-1 year-1) for combined carbon dioxide, methane, and nitrous oxide. This surpassed the cumulative potentials of EA and OA (0.35 ± 0.05 (10-2 Pg CO2-ep ha-1 year-1)). Additionally, structural equation modeling indicated that GHG emissions resulted from a combination of carbon component loading and environmental factors. DOC exhibited a positive correlation with GWPs when influenced by biodegradable DOC. Total alkalinity and pH influenced DIC, leading to elevated pCO2 in aquatic systems, thereby enhancing GWPs. Predictive modeling using backpropagation artificial neural networks (BP-ANN) for GWPs, incorporating carbon components and environmental factors, demonstrated a good fit (R2 = 0.6078, RMSEaverage = 0.069, p > 0.05) between observed and predicted values. Enhancing the estimation of aquatic region feedback to GHG changes was achieved by incorporating corresponding water quality parameters. In summary, this study underscores the pivotal role of carbon components and environmental factors in aquatic regions for GHG emissions. The application of BP-ANN to estimate greenhouse effects from aquatic regions is highlighted, providing theoretical and experimental support for future advancements in monitoring and developing policies concerning the influence of water quality on GHG emissions.

2.
Environ Pollut ; 335: 122273, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506800

RESUMEN

The effect of the molybdenum disulfide (MoS2)/levofloxacin (LVF) co-exposure was explored on Phragmites communis and rhizosphere soil bacterial communities. The sequence of MoS2/LVF exposure and the different MoS2 dosages (10 mg/kg and 100 mg/kg) contributed to different degrees of effect on the plant after 42 days of exposure. The treatment with priority addition of low dosage MoS2 significantly ameliorated P. communis growth, with root length growing up to 532.22 ± 46.29 cm compared to the sole LVF stress (200.04 ± 29.13 cm). Besides, MoS2 served as an alleviator and reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in P. communis under LVF stress, and activated bacteria in rhizosphere soil. These rhizosphere soil microbes assisted in mitigating toxic pollution in the soil and inducing plant resistance to external stress, such as bacteria genera Bacillus, Microbacterium, Flavihumibacter and altererythrobacter. Potential functional profiling of bacterial community indicated the addition of MoS2 contributed to relieve the reduction in functional genes associated with amino acid metabolism and the debilitation of gram_negative and aerobic phenotypic traits caused by LVF stress. This finding reveals the effect of different exposure sequences of MoS2 nanoparticles and antibiotic for plant-soil systems.


Asunto(s)
Molibdeno , Rizosfera , Levofloxacino , Poaceae , Bacterias/metabolismo , Suelo/química , Plantas , Microbiología del Suelo
3.
J Hazard Mater ; 443(Pt A): 130119, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36265386

RESUMEN

Chlorinated polyfluoroalkyl ether sulfonate (F-53B) and perfluorooctanesulfonate (PFOS) are used and emitted as fog inhibitors in the chromium plating industry, and they are widely detected worldwide. To study the effects of F-53B and PFOS on the rhizosphere defense system, they were added at two levels (0.1 and 50 mg L-1) to the soil where different plants (Lythrum salicaria and Phragmites communis) were grown. In bulk soils, high concentrations of F-53B/PFOS resulted in significant increases in soil pH, NH4+-N, and NO3--N (the effect of PFOS on NO3--N was not significant). Moreover, the extent of the effects of PFOS and F-53B on the physicochemical properties of bulk soils were different (e.g., PFOS caused an increase of NH4+-N by 8.94%-45.97% compared to 1.63%-25.20% for F-53B). Root exudates and PFASs together influenced the physicochemical properties of rhizosphere soils (e.g., TOC increased significantly in contaminated rhizosphere soils but did not change in non-bulk soils). Under the influence of F-53B/PFOS, the root exudates regulated by plants were changed and weakened the effect of F-53B/PFOS on microbial community of rhizosphere soil. The rhizosphere defense systems of different plants have both similarities and differences in response to different substances and concentrations.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Fluorocarburos/toxicidad , Rizosfera , Ácidos Alcanesulfónicos/toxicidad , Suelo
4.
J Hazard Mater ; 439: 129609, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35870209

RESUMEN

In recent years, many efforts have been made to modulate the interaction between carriers and nanoparticles under the integrity of the active site structure. Herein, SrFeO3 @CoSe2 nanocomposite was fabricated by loading CoSe2 onto SrFeO3 particles with a perovskite structure in the form of an encapsulation. The optimized SFO@CS-0.3 catalyst exhibited high catalytic activity in photo-peroxymonosulfate-based reaction and the catalyst was structurally stable over a wide temperature range. Characterization and theoretical results demonstrated that the charge in the SrFeO3 was transferred from Fe to Co cation of the CoSe2 via the interfacial oxygen atom. Moreover, the newly established oxygen-metal structure (Fe-Ov-Co) acted as a catalytic site, accelerating the cleavage of the peroxymonosulfate bond to generate radicals, which were desorbed into solution to attack the contaminant. Simultaneously, the heterojunction constructed by the catalyst underwent internal electron transfer under visible light, creating a field in which multiple reactive oxygen species co-oxidized organic contaminant.


Asunto(s)
Cobalto , Hierro , Cobalto/química , Electrones , Hierro/química , Oxígeno , Peróxidos/química
5.
Environ Pollut ; 306: 119471, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35577260

RESUMEN

Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.


Asunto(s)
Nanopartículas , Aguas del Alcantarillado , Bacterias/metabolismo , Reactores Biológicos/microbiología , Humanos , Microplásticos , Nitrógeno/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos
6.
Water Res ; 217: 118447, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429889

RESUMEN

Light as an environmental factor can affect the process of anaerobic digestion, but there is no systematic study in municipal wastewater sludge mesophilic digestion. In this study, the effects of light on the performance of the anaerobic digestion system and photo-anaerobic microbiota (PAM) were evaluated in lighted anaerobic batch digesters (LABRs). The methane yield from the reactor under the dark condition (LABR0) was 179.2 mL CH4/g COD, which was lower than 305.4 mL CH4/g COD and 223.0 mL CH4/g COD (n = 3, p < 0.05) from reactors under the light intensity of 3600 lm (LABR1) and 7200 lm (LABR2), respectively. The dominant genera in the bacterial and archaeal communities were Bacillus and Methanosarcina under light conditions, Enterococcus and Methanobacterium under dark conditions. And these two bacteria acted as electroactive bacterial genera, indicating that light changes the combination of direct interspecies electron transfer (DIET) microbial partners and activates the DIET pathway for methane production. The electron conduction pathways analysis further suggests that biological DIET (bDIET) between microbial biomass, rather than DIET via conductive material (cDIET) between microbes and conductive materials, is promoted and behaves as the dominant factor enhancing methane production under light conditions. The morphology of microorganisms and the amount and properties of EPS corroborate these views. Our findings are guided to anaerobic digester constructions under the outdoor environment with light exposure.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Anaerobiosis , Bacterias/metabolismo , Reactores Biológicos/microbiología , Digestión , Transporte de Electrón , Metano/metabolismo , Aguas del Alcantarillado/microbiología
7.
Environ Pollut ; 295: 118684, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34921944

RESUMEN

The widespread presence and persistence of perfluorooctane sulfonate (PFOS) in wastewater treatment plants, as well as its toxicity and bioaccumulation potential, necessitates the investigation on their impact on bioreactor performance. A 48-day exposure test was adopted to study the effects of low (10 µg L-1) and high (1000 µg L-1) PFOS concentrations in a sequencing batch reactor on the performance, composition, and microbial community of activated sludge. The results suggested that adding PFOS at low and high concentrations lowered the removal efficiency of total nitrogen by 22.48% (p < 0.01) and 16.30% (p < 0.01) respectively, while enhanced that of total phosphorus by 1.87% (p > 0.05) and 7.07% (p < 0.05) respectively, compared with the control group. The addition of PFOS also led to the deterioration of activated sludge dewatering performance. Composition and spectroscopic measurements revealed that the PFOS dosage changed the composition of the activated sludge. Furthermore, the PFOS altered the structure and function of the activated sludge microbial community as well as key enzyme activities.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Microbiota , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Aguas del Alcantarillado
8.
Environ Pollut ; 279: 116904, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765504

RESUMEN

Here we investigated the acute effects (12 h exposure) of three polystyrene nanoplastics (PS NPs, including PS, PS-COOH and PS-NH2) on extracellular polymeric substance (EPS) composition of activated sludge. Three PS NPs exhibited the significant inhibition in total EPS and protein (PRO) production. The functional groups involved in the interactions between PS NPs and EPS were C-(C, H), and those between PS-NH2 NPs and EPS were CO and O-C-O. In addition, the dewaterability of activated sludge were optimized by three PS NPs, especially PS-NH2 NPs. Three PS NPs caused nonnegligible cellular oxidative stress and cell membrane damage in activated sludge (PS NPs exposure concentration: 100 mg/L). Among them, the cell membrane damage caused by PS-NH2 was the most significant. Overall, the degree of influence on EPS and cytotoxicity of activated sludge varies with the surface functional groups of PS NPs.


Asunto(s)
Poliestirenos , Aguas del Alcantarillado , Matriz Extracelular de Sustancias Poliméricas , Microplásticos
9.
Sci Total Environ ; 763: 143029, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129526

RESUMEN

Plants are vital components of the nitrogen (N) cycling in the riparian zones. Understanding of N uptake strategies of riparian plants, including N sources and preference in N forms (ammonium (NH4+) vs. nitrate (NO3-)), is essential to advance our knowledge on the role that plants play in regulating nutrient biogeochemical cyclings in the riparian areas. In this study, stable N isotopes (δ15N) of three riparian plants, including Acorus calamus, Canna indica and Phragmites australis, and the δ15N of NH4+ and NO3- in different sources were measured during the plant growing season (June-September) in the Taihu Lake Basin. The dissolved inorganic N (DIN) from river water, groundwater, rainwater and soil were considered as the major N sources for plants in the riparian ecosystem. Our results indicated that soil was the largest source for plant N nutrition, with significantly different (P < 0.05) contributions from soil observed among plant species (80.5 ± 4.1, 73.9 ± 2.8 and 58.7 ± 6.1% for A. calamus, C. indica, and P. australis, respectively). Meanwhile, complex water networks, shallow water tables, and high DIN content in rainwater lead to nonignorable N contributions from river water, groundwater and rainwater to plants. Groundwater contributed more percentage of N to P. australis (12.8 ± 3.2%) than A. calamus (6.1 ± 1.9%) and C. indica (8.0 ± 1.5%), which is likely attributed to the deeper roots of P. australis. All plants showed similar N preference for NO3- during the growing season. External environmental conditions and plant characteristics and adaption to more abundant soil NO3- content are possible explanations. Our research could provide important information for vegetation selections during the process of riparian ecological restoration. Reasonable choice of vegetation is essential to plant growth and water quality management, especially in agricultural watersheds where N concentrations are relatively high in agricultural runoff due to the wide uses of N fertilizers.


Asunto(s)
Compuestos de Amonio , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente , Isótopos , Lagos , Nitratos/análisis , Nitrógeno , Estaciones del Año , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 758: 143633, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33223161

RESUMEN

The source, distribution, migration, and fate of microplastics (MPs) in aquatic and terrestrial ecosystems have received much attention. However, the relevant reports in wetland ecosystems, the boundary area between water and land, are still rare. Where are the sources and sinks of MPs in the wetland? The latest researches have shown that the sources of MPs in wetlands include sewage discharge, surface runoff, and plastic wastes from aquaculture. Fibers and fragments are the most common shapes, and PE, PP, PS can be detected in water or sediment matrices, and biota of wetlands. The distribution is affected by hydrodynamic conditions, sediment properties, and vegetation coverage. Factors affecting the vertical migration of MPs include their own physical and chemical properties, the combination of substances that accelerate deposition (mineral adsorption and biological flocculation), and resuspension. Minerals tend to adsorb negatively charged MPs while algae aggregates have a preference for positively charged MPs. The wetlands vegetation can trap MPs and affect their migration. In water matrices, MPs are ingested by organisms and integrated into sediments, which makes them seem undetectable in the wetland ecosystem. Photodegradation and microbial degradation can further reduce the MPs in size. Although recent research has increased, we are still searching for a methodological harmonization of the detection practices and exploring the migration rules and fate patterns of MPs. Our work is the first comprehensive review of the source, distribution, migration, and fate of MPs in wetland ecosystems. It reveals the uniqueness of wetland habitat in the research of MPs and indicates the potential of wetlands acting as sources or sinks for MPs.

11.
Sci Total Environ ; 741: 140494, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32886976

RESUMEN

Here, we examined the effects of low and high concentrations of perfluorooctanesulfonate (PFOS) on rhizosphere soil N cycling processes in the presence of Lythrum salicaria and Phragmites communis over 4 months. Compared with the control group, the nitrate nitrogen (NO3--N) content of the bulk soil in the low PFOS (0.1 mg kg-1) treatment significantly decreased (27.7%), the ammonium nitrogen (NH4+-N) content significantly increased (8.7%), and the pH value and total organic carbon (TOC) content slightly increased (0.3% and 1.1%, respectively). Compared with the low PFOS treatment, the content of NO3-N, NH4+-N and pH value in the bulk soil of the high PFOS treatment (50 mg kg-1) significantly increased (1.0%, 53.8% and 61.8%, respectively), and the TOC content significantly decreased (8.2%). Soil protease levels were high in the low PFOS treatment, but low in the high PFOS treatment. PFOS produced inverted U-shaped responses in the potential nitrification (1.5, 3.0, and 1.1 mg N d-1 kg-1 in no, low, and high PFOS, respectively), denitrification (0.19, 0.30, and 0.22 mg N d-1 kg-1 in no, low, and high PFOS, respectively), and N2O emission rates (0.01, 0.03, and 0.02 mg N d-1 kg-1 in no, low, and high PFOS, respectively) of bulk soil. The abundance of the archaea amoA gene decreased with increasing PFOS concentration, whereas that of bacterial amoA increased; inverted U-shaped responses were observed for narG, nirK, nirS, and nosZ. In the PFOS-contaminated rhizosphere soil, the observed changes differed from those in the bulk soil and differed between treatments. P. communis tended to upregulate each step of the nitrogen cycle under low PFOS conditions, whereas L. salicaria tended to inhibit them. Under high PFOS conditions, both test plants tended to act as inhibitors of the soil N-cycle; thus, the effects of PFOS on soil N transformation were plant-specific.


Asunto(s)
Rizosfera , Suelo , Ácidos Alcanesulfónicos , Desnitrificación , Fluorocarburos , Nitrificación , Nitrógeno/análisis , Ciclo del Nitrógeno , Microbiología del Suelo
12.
J Hazard Mater ; 398: 123030, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32492616

RESUMEN

The effect of nanomaterials aging, namely the transformation of comprehensive characteristics after experiencing real or complex environmental behaviors, on their ecotoxicology is still lacking. Moreover, the mechanisms by which NPs influence biological phosphorus (P) removal during sewage treatment require further elucidation. Therefore, we used both pristine and aged anatase (TiO2-A) and rutile (TiO2-R) NPs to investigate the mechanisms by which NPs affect P removal in a SBR. At 0.1 mg/L, the four types of NPs (pristine and aged) had no significant effect on sludge purification after acute (72-h) exposure under simulated sunlight. However, at 50 mg/L-regardless of the crystalline phase of the NPs-SOP and COD removal efficiency dropped steeply to approximately 42.2-82.4 % (p < 0.05) and 69.8-83.3 % (p < 0.05), respectively, especially in the pristine TiO2-NPs groups because of decrease of richness and diversity of genus level of PAOs and enzyme activity of both PPK and PPX, and the sluggish transformation of PHA and glycogen. Aging reduced the ability of NPs toxicity. The toxicity mechanisms of TiO2-NPs included lipid peroxidation and contact damage, or leakage from bacterial cytoplasmic membrane, which are closely related to photooxidation capacity and aqueous solution stability-i.e., nanoscale effects-and the impacts of aging or inclusion.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Nanopartículas/toxicidad , Fósforo/toxicidad , Aguas del Alcantarillado , Titanio/toxicidad
13.
Water Res ; 182: 115953, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32559664

RESUMEN

Most of the current studies on the toxicology of pristine nanoparticles (NPs) are environmentally irrelevant, because their ''aging'' process accompanied by the physicochemical transformation is inevitable in the environment. Considering aging phenomenon will gain a better understanding of the toxicity and fate of NPs in the environment. Here, we focused on the physicochemical transformation of anatase-NPs (TiO2-A) and rutile-NPs (TiO2-R) after 90 days of aging and investigated the responses of freshwater biofilm formation to the stress changes of naturally aged TiO2-NPs (aTiO2-NPs). We found that after aging, the TiO2-NPs underwent sophisticated physicochemical transformations in the original morphology and microstructure owing to organic and crystal salts inclusions, such as energy band changes and the formation of Ti3+ on the NPs surfaces. These comprehensive transformations increased the stability of NPs in the exposed suspension. However, the physicochemical transformations were crystal-forms-dependent, and aging did not change the crystal structure and crystallinity. Interestingly, compared to pristine NPs, aTiO2-NPs showed much lower cytotoxicity and had the weaker ability to promote or inhibit the biofilm formation (p < 0.05) owing to the passivation of photoactivity caused by the comprehensive effect of the inclusions, especially for aTiO2-A. Regardless of aging or not of crystal forms, responses of biofilm formation were exposure-concentration-dependent, namely low concentration promotion (0.1 mg/L) and high concentration inhibition (10 mg/L), e.g., role transition of the pioneers (algae or bacteria) in initial colonization, extracellular polymeric substances (EPS) secretion and compositions of development stages with polysaccharide (PS)-rich and protein (PRO)-rich stages, and biomass and cell activity at different depths of mature biofilms. The reactive oxygen species (ROS) induced by TiO2-NPs showed typical hormesis. The changing trends of the autoinducers (c-di-GMP and quorum sensing signals including AHL and AI-2) were highly consistent with the growth stages of biofilms and were stimulated or suppressed by TiO2-NPs. The NPs crystal-dependently changed the microorganism community structures, while the UPGMA clustering of bacteria was based on the growth stages of the biofilms. The toxic mechanisms revealed that photoactivity and nanoscale retention of particles are the main reasons for the differences in the ecological stress capacity of four kinds of TiO2-NPs. Aging reduced characteristic differences of two pristine NPs and even reversed their relative stresses levels (p > 0.05). However, the toxicity of high-concentration aTiO2-NPs (10 mg/L) remained serious in a water environment. This study provides a better understanding for the water environmental risks evaluation and policy control of nanoparticles, that is, the effect of time aging has to be considered.


Asunto(s)
Nanopartículas , Titanio , Biopelículas , Agua Dulce
14.
J Hazard Mater ; 384: 121388, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31668758

RESUMEN

The long-terms effects of different crystal-composition TiO2 nanoparticles (NPs) on nitrogen-cycle-related functional guilds in activated sludge remain unclear, especially under natural light irradiation. Accordingly, activated sludge was exposed to anatase TiO2-NPs (TiO2-A) and rutile TiO2-NPs (TiO2-R) for up to 45 days. With markedly (p < 0.05) reducing nitrification-/denitrification-enzymatic-activities and abundances of ammonia-oxidizing-microorganisms (AOMs) and nitrite-reducing-bacteria (NRB), TiO2-NPs triggered bacteria and archaea UPGMA clustering and a deep modification of N-cycling functional diversity guided by crystal structure. in situ13C-DNA-SIP confirmed ammonia-oxidizing-bacteria (AOB) (Nitrosomonas and Nitrosospira) in original sludge as main active AOMs with 75.4 times more abundance than ammonia-oxidizing-archaea (AOA), while AOA within Nitrosopumilus and Nitrososphaera genera were the main active AOMs and tended to aggregate inside sludge after 10-mg/L TiO2-NPs exposure. Encoding-nirK NRB were more sensitive, while encoding-nirS Zoogloea with a total share of 4.97% to 14.93%, etc. were the main active NRB. AOB was more sensitive to TiO2-A, while TiO2-R showed the stronger toxicity to AOA and NRB resulting from differences in water environmental behaviors and crystal characteristics of two TiO2-NPs. This work expands understanding of the ecological risks of titanium-dioxide-crystal-NPs in aquatic environment and may help devise better methods to alleviate environmental stress caused by NPs at wastewater treatment plants.


Asunto(s)
Betaproteobacteria/efectos de los fármacos , Nanopartículas/toxicidad , Ciclo del Nitrógeno/efectos de los fármacos , Aguas del Alcantarillado/microbiología , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Amoníaco/metabolismo , Betaproteobacteria/metabolismo , Desnitrificación , Nitrificación , Nitritos/análisis , Nitritos/metabolismo
15.
Ecotoxicol Environ Saf ; 180: 215-226, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31100588

RESUMEN

Despite previous efforts and the rapid progress on elucidating the impact of perfluorooctanesulfonate (PFOS) on the environment, its effects on riparian plants, a key component of aquatic ecosystems, are still poorly understood. A 48-day hydroponic experiment was carried out on two typical riparian species (Acorus calamus and Phragmites communis) to examine the toxic effects of PFOS on these plants. The results showed that, at high concentration (more than 10 mg L-1), PFOS could prevent chlorophyll accumulation (reduced by 13.7-22.2% at 10 mg L-1 PFOS and 22.4-30.0% at 50 mg L-1 PFOS for 48 days) and soluble protein synthesis (reduced by 2.3-9.0% at 10 mg L-1 PFOS and 10.6-26.8% at 50 mg L-1 PFOS for 48 days). Contrastingly, less than 1 mg L-1 of PFOS could induce chlorophyll accumulation (increased by 18.6% in A. calamus roots, 11.3% in A. calamus leaves, and 13.6% in P. communis roots at 1 mg L-1 PFOS for 3 days) and soluble protein synthesis (increased by 6.1% in A. calamus roots, 18.4% in A. calamus leaves, 9.7% in P. communis roots, 23.4% in P. communis stems, and 24.0% in P. communis leaves, at 1 mg L-1 PFOS for 6 days). In addition, PFOS led to oxidative stress, as revealed by the elevated concentrations of malonaldehyde and hydrogen peroxide, and reduced the activities of antioxidant enzymes such as superoxide dismutase (reduced by 10.3% in P. communis stems at 50 mg L-1 PFOS for 48 days), catalase (reduced by 20.6-50.3% in test species at 50 mg L-1 PFOS for 48 days), and peroxidase (reduced by 24.9-37.7% in test species at 50 mg L-1 PFOS for 48 days). The biomarkers of both plants changed rapidly in the first half of the experiment (0-24 days) and stabilized in the second half of the experiment (24-48 days). The risk and related factors of PFOS on riparian plants were evaluated by using these biomarkers. Experiments showed that P. communis was more resistant to low concentration (<10 mg L-1) of PFOS than A. calamus.


Asunto(s)
Acorus/efectos de los fármacos , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Estrés Oxidativo , Poaceae/efectos de los fármacos , Acorus/microbiología , Antioxidantes/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Poaceae/metabolismo , Superóxido Dismutasa/metabolismo
16.
Environ Sci Technol ; 53(8): 4542-4555, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30888807

RESUMEN

The eco-toxicities of different crystalline phases of TiO2-NPs are controversial, and the effects and mechanisms on activated sludge are unclear. Therefore, we assessed the acute-toxicities (8-h exposure) of P25, anatase, and rutile TiO2-NPs in activated sludge using flow cytometry under simulated sunlight (hereafter-sun) and evaluated the relationship between sludge dewatering and bacterial cell death modes using Pearson's correlation coefficients ( r). Additionally, the response of the microbial community structure was examined by high throughput sequencing. Bacterial survival and death were observed by confocal laser scanning microscopy. Toxicity indicators (e.g., lactate dehydrogenase (LDH) and reactive oxygen species (ROS)) were determined. Overall, TiO2-NPs toxicity was concentration-dependent and crystalline-phase-dependent. The responses of bacterial communities to crystalline phases were more obvious than that of dosage. P25-sun and anatase-sun caused necrosis-like cell death via strong photo-oxidation confirmed by 131%/123% (1 mg/L) and 301%/254% (50 mg/L) LDH released by the control, while rutile-sun induced apoptosis-like death via intracellular ROS production increased to 165% (1 mg/L) and 420% (50 mg/L) of the control. P25 and anatase NPs had higher protein and polysaccharide affinities, while rutile NPs exhibited stronger attachment onto phospholipids. TiO2-NPs-sun reduced activated sludge dewaterability. Specific resistance to filtration (SRF) showed the strongest positive correlation with tightly bound extracellular polymeric substances (EPS) and total soluble microbial byproducts ( r = 0.974, p < 0.01) and was closely related to EPS content and composition, especially the increased bound water (BW) content and sludge protein concentrations. High Pearson correlation coefficients were observed between early apoptotic cells and BW content ( r = 0.952, p < 0.01) resulting from massive polysaccharides and between necrotic (including late apoptotic) cells and SRF ( r = 0.959, p < 0.01) resulting from high protein and EPS concentrations. Thus, in response to TiO2-NPs, bacterial cell death modes differentially weakened sludge dewatering.


Asunto(s)
Nanopartículas , Aguas del Alcantarillado , Bacterias , Muerte Celular , Filtración
17.
Environ Sci Pollut Res Int ; 25(18): 17878-17889, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29679275

RESUMEN

Engineered nano-TiO2 (Enano-TiO2) have inevitably discharged into aquatic sediments that resulted from their widespread use. The physicochemical characteristics of sediments might be changed because of remarkable properties of Enano-TiO2 and affected by the aging of sediments, thereby altering the environmental behavior and bioavailability of other pollutants such as perfluorooctane sulfonate (PFOS) in sediments. Here, adsorption behavior and mechanism of PFOS on aging aquatic sediments spiked with Enano-TiO2 at a weight ratio of 5.0% were investigated. The results showed that Enano-TiO2 significantly altered zero points of charge (pHzpc) and pore surface properties of sediments, manifested as pHzpc, the total surface area (SBET), the micro-pore surface area (Smicro), and the external surface area (Sext) of sediment particles contaminated with Enano-TiO2 clearly increased, instead average pore size decreased. Rapid intra-particle diffusion processes were well fitted by the pseudo-second-order rate model with the sorption rate (K2) following the order single (5.764 mg/(g·h)) > binary systems (3.393 mg/(g·h)). Freundlich model best described the sorption isotherm data with the larger sorption capacity (KF) and sorption affinity (1/n) of sediments spiked with Enano-TiO2 than that of sediments only. Additionally, Enano-TiO2 changed the adsorption thermodynamics of PFOS on the sediments with the absolute value of ∆G0, ∆H0, and ∆S0 increased. Fourier transform infrared (FT-IR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFOS and the functionalities on sediment surfaces, including O-H of carboxyl, alcohol, phenols, and chemisorbed H2O as well as carbonyl groups (C=O) of ketone groups. Furthermore, the multilayer sorption of PFOS on sediments contaminated with Enano-TiO2 is plausible because of bridging effect of Cu2+ and Pb2+.


Asunto(s)
Ácidos Alcanesulfónicos/química , Fluorocarburos/química , Titanio/química , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
18.
Environ Pollut ; 231(Pt 2): 1433-1441, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28917816

RESUMEN

The potential toxic impacts of different crystal phases of titania nanoparticles (TNPs) on freshwater biofilms, especially under ultraviolet C irradiation (UVC), are unknown. Here, adverse impacts of three phases (anatase, rutile, and P25, 50 mg L-1 respectively) with UVC irradiation (An-UV, Ru-UV, and P25-UV) on freshwater biofilms were conducted. Characterization experiments revealed that rutile TNPs had a higher water environment stability than anatase and P25 TNPs, possessing a stronger photocatalytic activity under UVC irradiation. Phase-dependent inhibition of cell viability and significant decreases of four- and five-fold in algal biomass at 12 h of exposure were observed compared with unexposed biofilms. Moreover, phase-dependent oxidative stress resulted in remarkably significant reductions (P < 0.01) of the photosynthetic yields of the biofilms, to 40.32% (P25-UV), 48.39% (An-UV), and 46.77% (Ru-UV) of the plateau value obtained in the unexposed biofilms. A shift in community composition that manifested as a strong reduction in diatoms, indicating cyanobacteria and green algae were more tolerant than diatoms when exposed to TNPs. In terms of the toxic mechanisms, rutile TNPs resulted in apoptosis by inducing excessive intracellular reactive oxygen species (ROS) production, whereas P25 and anatase TNPs tended to catalyze enormous acellular ROS lead to cell necrosis under UVC irradiation.


Asunto(s)
Biopelículas/efectos de los fármacos , Nanopartículas/toxicidad , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Catálisis , Supervivencia Celular , Cianobacterias , Diatomeas , Agua Dulce , Estrés Oxidativo , Especies Reactivas de Oxígeno , Pruebas de Toxicidad , Rayos Ultravioleta
19.
Bioresour Technol ; 241: 276-283, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28575791

RESUMEN

Comparative toxicity of three typical TiO2 NPs (Anatase, Rutile, and Degussa P25, 50mg/L respectively) under UVC irradiation (An+UV, Ru+UV, and P25+UV) on production and chemical characteristics of EPS in freshwater biofilms were investigated. Rutile was more stable in lake water, yet P25 and anatase were endowed with better photo-oxidation capacity. TiO2 NPs+UV enhanced total EPS, manifesting as LB-EPS increased by 98.16% (An+UV), 143.03% (Ru+UV), and 48.21% (P25+UV), while TB-EPS increased to 1.51 (An+UV), 1.36 (Ru+UV), and 1.61 (P25+UV) times greater than control without NPs and UVC, being mainly attributed to increase of polysaccharide and proteins. Three-dimensional fluorescence spectrum revealed tyrosine (An+UV and P25+UV) and tryptophan (P25+UV) protein-like substances vanished in LB-EPS. Fourier transform infrared spectroscopy indicated PO (An+UV and P25+UV) and CO or COC (P25+UV) disappeared in EPS. P25+UV and An+UV caused more lactate dehydrogenase release, while Ru+UV induced more reactive oxygen species and malondialdehyde production, consistent with decreased in cells viability.


Asunto(s)
Biopelículas , Nanopartículas , Titanio , Agua Dulce
20.
Chemosphere ; 182: 215-222, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28499182

RESUMEN

Powdered activated carbon (PAC), as an adsorbent, was applied to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Laboratory batch experiments were performed to investigate the influences of phosphate (P) competition, temperature, and pH for PFOS adsorption onto PAC. The results showed that higher temperature favored PFOS adsorption in single and binary systems. The kinetic data fitted very well to the pseudo second-order kinetic model. Thermodynamically, the endothermic enthalpy of the PFOS adsorption in single and binary systems were 125.07 and 21.25 kJ mol-1, respectively. The entropy of the PFOS adsorption in single and binary systems were 0.479 and 0.092 kJ mol-1 K-1, respectively. And the Gibbs constants were negative. These results indicated that the adsorption processes were spontaneous. The adsorption isotherms of PFOS agreed well with the Langmuir model. In the single system, PFOS adsorption decreased with increased pH value. The difference in the amount of PFOS adsorption between the single and binary systems increased at higher pH. Frustrated total internal reflection (FTIR) demonstrated that P competition increased the hydrophilicity of the PAC and the electrostatic repulsion between PFOS and PAC, then the PFOS adsorption amount decreased. It also demonstrated that, at higher temperature, increased PFOS adsorption was mainly due to the higher diffusion rate of PFOS molecules and greater number of active sites opened on the PAC surface.


Asunto(s)
Ácidos Alcanesulfónicos/aislamiento & purificación , Carbón Orgánico/química , Fluorocarburos/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Difusión , Concentración de Iones de Hidrógeno , Cinética , Fosfatos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...