Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 11: 1293568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304139

RESUMEN

Arteriovenous fistulas (AVFs) have long been used as dialysis access in patients with end-stage renal disease; however, their maturation and long-term patency still fall short of clinical needs. Rodent models are irreplaceable to facilitate the study of mechanisms and provide reliable insights into clinical problems. The ideal rodent AVF model recapitulates the major features and pathology of human disease as closely as possible, and pre-induction of the uremic milieu is an important addition to AVF failure studies. Herein, we review different surgical methods used so far to create AVF in rodents, including surgical suturing, needle puncture, and the cuff technique. We also summarize commonly used evaluations after AVF placement. The aim was to provide recent advances and ideas for better selection and induction of rodent AVF models. At the same time, further improvements in the models and a deeper understanding of AVF failure mechanisms are expected.

2.
Antioxidants (Basel) ; 13(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275625

RESUMEN

(1) Background: Arteriovenous fistulas (AVFs) are the preferred site for hemodialysis. Unfortunately, approximately 60% of patients suffer from AVF failure within one year. Oxidative stress plays an important role in the occurrence and development of AVF. However, the underlying mechanisms remain unclear. Therefore, specific oxidative stress-related biomarkers are urgently needed for the diagnosis and treatment of AVF failure. (2) Methods: Bioinformatics analysis was carried out on dataset GSE119296 to screen for PTGS2 as a candidate gene related to oxidative stress and to verify the expression level and diagnostic efficacy of PTGS2 in clinical patients. The effects of NS398, a PTGS2 inhibitor, on hemodynamics, smooth muscle cell proliferation, migration, and oxidative stress were evaluated in a mouse AVF model. (3) Results: Based on 83 oxidative stress-related differentially expressed genes, we identified the important pathways related to oxidative stress. PTGS2 may have diagnostic and therapeutic efficacy for AVF failure. We further confirmed this finding using clinical specimens and validation datasets. The animal experiments illustrated that NS398 administration could reduce neointimal area (average decrease: 49%) and improve peak velocity (average increase: 53%). (4) Conclusions: Our study identified PTGS2 as an important oxidative stress-related biomarker for AVF failure. Targeting PTGS2 reduced oxidative stress and improved hemodynamics in an AVF mouse model.

3.
Front Cardiovasc Med ; 9: 984472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035909

RESUMEN

For more than half a century, arteriovenous fistula (AVFs) has been recognized as a lifeline for patients requiring hemodialysis (HD). With its higher long-term patency rate and lower probability of complications, AVF is strongly recommended by guidelines in different areas as the first choice for vascular access for HD patients, and its proportion of application is gradually increasing. Despite technological improvements and advances in the standards of postoperative care, many deficiencies are still encountered in the use of AVF related to its high incidence of failure due to unsuccessful maturation to adequately support HD and the development of neointimal hyperplasia (NIH), which narrows the AVF lumen. AVF failure is linked to the activation and migration of vascular cells and the remodeling of the extracellular matrix, where complex interactions between cytokines, adhesion molecules, and inflammatory mediators lead to poor adaptive remodeling. Oxidative stress also plays a vital role in AVF failure, and a growing amount of data suggest a link between AVF failure and oxidative stress. In this review, we summarize the present understanding of the pathophysiology of AVF failure. Furthermore, we focus on the relation between oxidative stress and AVF dysfunction. Finally, we discuss potential therapies for addressing AVF failure based on targeting oxidative stress.

4.
Biomater Transl ; 3(1): 81-98, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837341

RESUMEN

Cardiovascular disease serves as the leading cause of death worldwide, with stenosis, occlusion, or severe dysfunction of blood vessels being its pathophysiological mechanism. Vascular replacement is the preferred surgical option for treating obstructed vascular structures. Due to the limited availability of healthy autologous vessels as well as the incidence of postoperative complications, there is an increasing demand for artificial blood vessels. From synthetic to natural, or a mixture of these components, numerous materials have been used to prepare artificial vascular grafts. Although synthetic grafts are more appropriate for use in medium to large-diameter vessels, they fail when replacing small-diameter vessels. Tissue-engineered vascular grafts are very likely to be an ideal alternative to autologous grafts in small-diameter vessels and are worthy of further investigation. However, a multitude of problems remain that must be resolved before they can be used in biomedical applications. Accordingly, this review attempts to describe these problems and provide a discussion of the generation of artificial blood vessels. In addition, we deliberate on current state-of-the-art technologies for creating artificial blood vessels, including advances in materials, fabrication techniques, various methods of surface modification, as well as preclinical and clinical applications. Furthermore, the evaluation of grafts both in vivo and in vitro, mechanical properties, challenges, and directions for further research are also discussed.

5.
Biomolecules ; 12(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35327582

RESUMEN

Cardiovascular diseases (CVDs) are still a major cause of global mortality and disability, seriously affecting people's lives. Due to the severity and complexity of these diseases, it is important to find new regulatory mechanisms to treat CVDs. Ferroptosis is a new kind of regulatory cell death currently being investigated. Increasing evidence showed that ferroptosis plays an important role in CVDs, such as in ischemia/reperfusion injury, heart failure, cardiomyopathy, and atherosclerosis. Protecting against CVDs by targeting ferroptosis is a promising approach; therefore, in this review, we summarized the latest regulatory mechanism of ferroptosis and the current studies related to each CVD, followed by critical perspectives on the ferroptotic treatment of CVDs and the future direction of this intriguing biology.


Asunto(s)
Cardiomiopatías , Enfermedades Cardiovasculares , Ferroptosis , Daño por Reperfusión , Cardiomiopatías/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Muerte Celular , Humanos , Daño por Reperfusión/metabolismo
6.
Front Public Health ; 10: 833967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223745

RESUMEN

Recent advances in the pathophysiologic understanding of coronavirus disease 2019 (COVID-19) suggests that cytokine release syndrome (CRS) has an association with the severity of disease, which is characterized by increased tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-2, IL-7, and IL-10. Hence, managing CRS has been recommended for rescuing severe COVID-19 patients. TNF-α, one of the pro-inflammatory cytokines commonly upregulated in acute lung injury, triggers CRS and facilitates SARS-CoV-2 interaction with angiotensin-converting enzyme 2 (ACE2). TNF-α inhibitors, therefore, may serve as an effective therapeutic strategy for attenuating disease progression in severe SARS-CoV-2 infection. Below, we review the possibilities and challenges of targeting the TNF-α pathway in COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Síndrome de Liberación de Citoquinas , Humanos , SARS-CoV-2 , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Cardiovasc Dev Dis ; 10(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36661898

RESUMEN

(1) Background: Arteriovenous fistulas (AVFs) are the preferred access for hemodialysis. Unfortunately, about 60% of patients, especially female patients, fail to receive normal dialysis within one year after surgery because of AVF failure. However, the underlying mechanisms caused by sex differences in AVF failure remain unclear. (2) Methods: We performed analysis of DEGs and functional analysis with the dataset GSE119296 to reveal the biology underlying AVF failure. Immune responses were calculated using CIBERSORT. A protein-protein interaction network and hub gene were constructed using STRING and stepwise identification of potential drugs was performed online. (3) Results: Functional analysis showed that extracellular matrix reprogramming and PI3K-AKT pathway enrichment were significant in both male and female patients. COL1A1 was the hub gene in male patients, whereas CDK1 was the hub gene in female patients. Immune responses including γδ-T cells and mast cells are activated in female patients while no significant differences were noted in the male group. (4) Conclusions: In this study, we used a series of mature and recognized bioinformatic strategies to determine the following items: (1) Reveal the pathogenesis of AVF failure through HUB genes and signaling pathways between the different sexes. (2) Determine the relationship between sex differences in AVF failure and immune abnormalities. (3) Search for relevant sex-specific drugs targeting AVF failure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...