Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Eur Radiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750169

RESUMEN

OBJECTIVES: To evaluate signal enhancement ratio (SER) for tissue characterization and prognosis stratification in pancreatic adenocarcinoma (PDAC), with quantitative histopathological analysis (QHA) as the reference standard. METHODS: This retrospective study included 277 PDAC patients who underwent multi-phase contrast-enhanced (CE) MRI and whole-slide imaging (WSI) from three centers (2015-2021). SER is defined as (SIlt - SIpre)/(SIea - SIpre), where SIpre, SIea, and SIlt represent the signal intensity of the tumor in pre-contrast, early-, and late post-contrast images, respectively. Deep-learning algorithms were implemented to quantify the stroma, epithelium, and lumen of PDAC on WSIs. Correlation, regression, and Bland-Altman analyses were utilized to investigate the associations between SER and QHA. The prognostic significance of SER on overall survival (OS) was evaluated using Cox regression analysis and Kaplan-Meier curves. RESULTS: The internal dataset comprised 159 patients, which was further divided into training, validation, and internal test datasets (n = 60, 41, and 58, respectively). Sixty-five and 53 patients were included in two external test datasets. Excluding lumen, SER demonstrated significant correlations with stroma (r = 0.29-0.74, all p < 0.001) and epithelium (r = -0.23 to -0.71, all p < 0.001) across a wide post-injection time window (range, 25-300 s). Bland-Altman analysis revealed a small bias between SER and QHA for quantifying stroma/epithelium in individual training, validation (all within ± 2%), and three test datasets (all within ± 4%). Moreover, SER-predicted low stromal proportion was independently associated with worse OS (HR = 1.84 (1.17-2.91), p = 0.009) in training and validation datasets, which remained significant across three combined test datasets (HR = 1.73 (1.25-2.41), p = 0.001). CONCLUSION: SER of multi-phase CE-MRI allows for tissue characterization and prognosis stratification in PDAC. CLINICAL RELEVANCE STATEMENT: The signal enhancement ratio of multi-phase CE-MRI can serve as a novel imaging biomarker for characterizing tissue composition and holds the potential for improving patient stratification and therapy in PDAC. KEY POINTS: Imaging biomarkers are needed to better characterize tumor tissue in pancreatic adenocarcinoma. Signal enhancement ratio (SER)-predicted stromal/epithelial proportion showed good agreement with histopathology measurements across three distinct centers. Signal enhancement ratio (SER)-predicted stromal proportion was demonstrated to be an independent prognostic factor for OS in PDAC.

2.
Brain Commun ; 6(1): fcae042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410619

RESUMEN

White matter hyperintensities, one of the major markers of cerebral small vessel disease, disrupt the integrity of neuronal networks and ultimately contribute to cognitive dysfunction. However, a deeper understanding of how white matter hyperintensities related to the connectivity patterns of brain hubs at the neural network level could provide valuable insights into the relationship between white matter hyperintensities and cognitive dysfunction. A total of 36 patients with moderate to severe white matter hyperintensities (Fazekas score ≥ 3) and 34 healthy controls underwent comprehensive neuropsychological assessments and resting-state functional MRI scans. The voxel-based graph-theory approach-functional connectivity strength was employed to systematically investigate the topological organization of the whole-brain networks. The white matter hyperintensities patients performed significantly worse than the healthy controls in episodic memory, executive function and information processing speed. Additionally, we found that white matter hyperintensities selectively affected highly connected hub regions, predominantly involving the medial and lateral prefrontal, precuneus, inferior parietal lobule, insula and thalamus. Intriguingly, this impairment was connectivity distance-dependent, with the most prominent disruptions observed in long-range connections (e.g. 100-150 mm). Finally, these disruptions of hub connectivity (e.g. the long-range functional connectivity strength in the left dorsolateral prefrontal cortex) positively correlated with the cognitive performance in white matter hyperintensities patients. Our findings emphasize that the disrupted hub connectivity patterns in white matter hyperintensities are dependent on connection distance, especially longer-distance connections, which in turn predispose white matter hyperintensities patients to worse cognitive function.

3.
Brain Res Bull ; 203: 110776, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37805053

RESUMEN

The relationship between brain structure alteration and metabolic product clearance after night shift work with total sleep deprivation (SD) remains unclear. Twenty-two intensive care unit staff on regularly rotating shift work were implemented with structural and diffusion MRI under both rest wakefulness (RW) and SD conditions. Peripheral blood samples were collected for the measurement of cerebral metabolites. Voxel-based morphometry and diffusion tensor imaging analysis were used to investigate the alterations in the gray matter density (GMD) and mean diffusivity (MD) within the participants. Furthermore, correlation analysis was performed to investigate the relationship between the neuroimaging metrics and hematological parameters. A significant increase in the GMD values was observed in the anterior and peripheral areas of the brain under SD. In contrast, a decrease in the values was observed in the posterior regions, such as the bilateral cerebellum and thalamus. In addition, a significant reduction in the total cerebrospinal fluid volume was observed under SD. The Aß42/Aß40 levels in participants under SD were significantly lower than those under RW. The mean MD increment values extracted from the region of interest (ROI) of the anterior brain were negatively correlated with the increment of plasma Aß42/Aß40 levels (r = -0.658, P = 0.008). The mean GMD decrement values extracted from the posterior ROI were positively correlated with the increment of plasma Aß-40 levels (r = 0.601, P = 0.023). The findings of this study suggest that one night of shift work under SD induces extensive and direction-specific structural alterations of the brain, which are associated with aberrant brain metabolic waste clearance.


Asunto(s)
Imagen de Difusión Tensora , Privación de Sueño , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Vigilia , Descanso , Imagen por Resonancia Magnética , Sustancia Gris/diagnóstico por imagen
4.
J Magn Reson Imaging ; 56(6): 1621-1649, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35852470

RESUMEN

Insulin is a peptide well known for its role in regulating glucose metabolism in peripheral tissues. Emerging evidence from human and animal studies indicate the multifactorial role of insulin in the brain, such as neuronal and glial metabolism, glucose regulation, and cognitive processes. Insulin resistance (IR), defined as reduced sensitivity to the action of insulin, has been consistently proposed as an important risk factor for developing neurodegeneration and cognitive impairment. Although the exact mechanism of IR-related cognitive impairment still awaits further elucidation, neuroimaging offers a versatile set of novel contrasts to reveal the subtle cerebral abnormalities in IR. These imaging contrasts, including but not limited to brain volume, white matter (WM) microstructure, neural function and brain metabolism, are expected to unravel the nature of the link between IR, cognitive decline, and brain abnormalities, and their changes over time. This review summarizes the current neuroimaging studies with multiparametric techniques, focusing on the cerebral abnormalities related to IR and therapeutic effects of IR-targeting treatments. According to the results, brain regions associated with IR pathophysiology include the medial temporal lobe, hippocampus, prefrontal lobe, cingulate cortex, precuneus, occipital lobe, and the WM tracts across the globe. Of these, alterations in the temporal lobe are highly reproducible across different imaging modalities. These structures have been known to be vulnerable to Alzheimer's disease (AD) pathology and are critical in cognitive processes such as memory and executive functioning. Comparing to asymptomatic subjects, results are more mixed in patients with metabolic disorders such as type 2 diabetes and obesity, which might be attributed to a multifactorial mechanism. Taken together, neuroimaging, especially MRI, is beneficial to reveal early abnormalities in cerebral structure and function in insulin-resistant brain, providing important evidence to unravel the underlying neuronal substrate that reflects the cognitive decline in IR. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Humanos , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/complicaciones , Disfunción Cognitiva/complicaciones , Neuroimagen/métodos , Enfermedad de Alzheimer/metabolismo , Encéfalo/patología , Imagen por Resonancia Magnética , Insulinas/metabolismo
5.
Brain Imaging Behav ; 16(4): 1884-1892, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543862

RESUMEN

This study aimed to investigate the alterations of cognition and functional connectivity post noise, and find the progress and neural substrates of noise induced hearing loss (NIHL)-associated cognitive impairment. We exposed rats to 122 dB broad-band noise for 2 h to induce hearing loss and the auditory function was assessed by measuring auditory brainstem response thresholds. Morris water maze test and resting state MRI were computed at 0 day, 1, 3, 6 months post noise to reveal cognitive ability and neural substrate. The interregional connections in the auditory network and default mode network, as well as the connections using the auditory cortex and cingulate cortex as seeds were also examined addtionally. The deficit in spatial learning/memory was only observed at 6 months after noise exposure. The internal connections in the auditory network and default mode network were enhanced at 0 day and decreased at 6 months post noise. The connectivity using the auditory cortex and cingulate cortex as seeds generally followed the rule of "enhancement-normal-decrease-widely decrease". A new model accounting for arousal, dementia, motor control of NIHL in is proposed. Our study highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.


Asunto(s)
Corteza Auditiva , Pérdida Auditiva Provocada por Ruido , Animales , Corteza Auditiva/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética , Ruido/efectos adversos , Ratas
6.
Eur Radiol ; 32(10): 6943-6952, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35471667

RESUMEN

OBJECTIVES: We aimed to investigate the additional significance of cerebral small vessel disease (SVD) beyond collaterals in determining the clinical outcome after acute ischemic stroke (AIS). METHODS: We retrospectively reviewed large vessel-involved stroke patients who had baseline CTA within 24 h after symptom onset and had an MRI scan 5 days after admission from October 1, 2018, to October 31, 2021. Collaterals and SVD markers (including atrophy, leukoaraiosis, lacunes, and perivascular space) were graded on CT angiography and MR images, respectively. Modified Rankin Scale (mRS) score at 90 days was recorded, and mRS ≤ 2 was regarded as a good clinical outcome. The associations between SVD markers, collaterals, and mRS were analyzed using logistic and causal mediation regression. RESULTS: We finally enrolled 119 patients (70 ± 13 years). The multivariable regression showed atrophy (evidence: OR 0.05 [95% CI 0.01-0.31], p = 0.002; severe: OR 0.08 [95% CI 0.01-0.44], p = 0.007) and evidence of lacune (OR 0.30 [95% CI 0.08-0.96], p = 0.049) were associated with poor clinical outcomes after correcting covariables. Collaterals mediated 25.74% of the effect of atrophy on poor clinical outcomes (p < 0.001), while lacune impacted clinical outcomes without collaterals' mediation effect (p = 0.54). The classification model with atrophy and lacune had a significantly higher AUC than without markers to distinguish good and poor outcomes (p = 0.036). CONCLUSIONS: Beyond collaterals, brain frailty, specifically assessed by atrophy and lacune, was essential in evaluating stroke patients and could additionally improve the stroke outcome prediction. KEY POINTS: • Beyond collaterals, brain frailty, specifically assessed by brain atrophy and lacune, was still an independent risk factor of unfavorable clinical outcomes after AIS. • Adding brain atrophy and lacune into the model has an extra benefit in predicting stroke outcomes. • The effect of atrophy on stroke outcomes was proportionally mediated through collaterals, but about three-quarters of the effect of brain atrophy and the total effect of lacune directly impacted stroke outcomes without a mediation effect of collaterals.


Asunto(s)
Isquemia Encefálica , Fragilidad , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Atrofia , Encéfalo/diagnóstico por imagen , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Estudios Retrospectivos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/etiología , Resultado del Tratamiento
7.
Ann Surg Oncol ; 29(5): 2960-2970, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35102453

RESUMEN

BACKGROUND: Prediction models with or without radiomic analysis for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) have been reported, but the potential for model-predicted MVI in surgical planning is unclear. Therefore, we aimed to explore the effect of predicted MVI on early recurrence after anatomic resection (AR) and non-anatomic resection (NAR) to assist surgical strategies. METHODS: Patients with a single HCC of 2-5 cm receiving curative resection were enrolled from 2 centers. Their data were used to develop (n = 230) and test (n = 219) two prediction models for MVI using clinical factors and preoperative computed tomography images. The two prediction models, clinico-radiologic model and clinico-radiologic-radiomic (CRR) model (clinico-radiologic variables + radiomic signature), were compared using the Delong test. Early recurrence based on model-predicted high-risk MVI was evaluated between AR (n = 118) and NAR (n = 85) via propensity score matching using patient data from another 2 centers for external validation. RESULTS: The CRR model showed higher area under the curve values (0.835-0.864 across development, test, and external validation) but no statistically significant improvement over the clinico-radiologic model (0.796-0.828). After propensity score matching, difference in 2-year recurrence between AR and NAR was found in the CRR model predicted high-risk MVI group (P = 0.005) but not in the clinico-radiologic model predicted high-risk MVI group (P = 0.31). CONCLUSIONS: The prediction model incorporating radiomics provided an accurate preoperative estimation of MVI, showing the potential for choosing the more appropriate surgical procedure between AR and NAR.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Hepatectomía , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Invasividad Neoplásica , Estudios Retrospectivos
8.
Brain Connect ; 12(1): 74-84, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33947271

RESUMEN

Aim: The aim of this study was to investigate basic task-functional magnetic resonance imaging (fMRI) or resting-state fMRI (rs-fMRI) results on Sprague Dawley (SD) rats and Wistar rats under three anesthetic regimens. Introduction: SD rats and Wistar rats are the two-most commonly used rat strains in medical research and neuroimaging studies. It still lacks a direct comparison of basic task-fMRI and rs-fMRI results between the Wistar rats and SD rats under different anesthetic regimens. Methods: Two rat strains and different time points were adopted to investigate task-fMRI activation and rs-fMRI functional connectivity (FC) results under three kinds of anesthetic regimens (2-2.5% isoflurane only, dexmedetomidine bolus combined with a continuous infusion, and dexmedetomidine bolus combined with 0.3-0.5% isoflurane). The electrical forepaw stimulation method and seed-based FC results were used to compare the task-fMRI brain activation and rs-fMRI FC patterns between the two rat strains. Results: The results showed that Wistar rats had more robust brain activation in task fMRI experiments while exhibiting a less specific interhemispheric FC than that of SD rats under the two dexmedetomidine anesthetic regimens. Moreover, even low-level isoflurane could significantly affect task-fMRI and rs-fMRI results in both rat strains. Conclusions: SD and Wistar rats showed different brain activations and interhemispheric FC patterns under the two dexmedetomidine anesthetic regimens. These results may serve as reference information for small-animal fMRI studies. Impact statement Our study demonstrates different stimulation-induced blood oxygen level-dependent responses and functional connectivity patterns between Sprague Dawley rats and Wistar rats under three anesthetics. This study provides some reference results for different anesthetics' effects on different rat strains in different functional magnetic resonance imaging modalities.


Asunto(s)
Anestésicos , Dexmedetomidina , Isoflurano , Anestésicos/farmacología , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Dexmedetomidina/farmacología , Humanos , Isoflurano/farmacología , Imagen por Resonancia Magnética/métodos , Ratas , Ratas Sprague-Dawley , Ratas Wistar
9.
Neuroradiol J ; 35(2): 193-202, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34313179

RESUMEN

PURPOSE: Exploration of the effect of chronic recurrent seizures in focal epilepsy on brain volumes has produced many conflicting reports. To determine differences in brain structure in temporal lobe epilepsy (TLE) and extratemporal epilepsy (using frontal lobe epilepsy (FLE) a surrogate) further, we performed a retrospective analysis of a large cohort of patients with seizure-onset zone proven by intracranial monitoring. METHODS: A total of 120 TLE patients, 86 FLE patients, and 54 healthy controls were enrolled in this study. An analysis of variance of voxel-based morphometry (VBM) was used to seek morphometric brain differences among TLE patients, FLE patients, and healthy controls. Additionally, a vertex-based surface analysis was utilized to analyze the hippocampus and thalamus. Significant side-specific differences in hippocampal gray matter volume were present between the left TLE (LTLE), right TLE RTLE (RTLE), and control groups (p<0.05, family-wise error (FWE) corrected). RESULTS: Vertex analyses revealed significant volume reduction in inferior parts of the left hippocampus in the LTLE group and lateral parts of the right hippocampus in the RTLE group compared to controls (p<0.05, FWE corrected). Significant differences were also detected between the LTLE and control group in the bilateral medial and inferior thalamus (p<0.05, FWE corrected). FLE patients did not exhibit focal atrophy of gray matter across the brain. CONCLUSION: Our results highlight the variation in morphometric lateralized changes in the brain between different epilepsy onset zones, providing critical insight into the natural history of people with drug-resistant focal epilepsies.


Asunto(s)
Epilepsia del Lóbulo Frontal , Epilepsia del Lóbulo Temporal , Encéfalo/diagnóstico por imagen , Epilepsia del Lóbulo Frontal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Estudios Retrospectivos , Lóbulo Temporal
10.
J Magn Reson Imaging ; 55(2): 424-434, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34184359

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is associated with cognitive decline and altered brain structure and function. However, the interhemispheric coordination of T2DM patients is unclear. PURPOSE: To investigate interhemispheric functional and anatomic connectivity in T2DM, and their associations with cognitive performance and endocrine parameters. STUDY TYPE: Prospective. SUBJECTS: 38 T2DM patients and 42 matched controls. FIELD STRENGTH/SEQUENCES: 3.0 T magnetic resonance imaging (MRI) scanner; magnetization-prepared rapid acquisition gradient echo sequence; fluid-attenuated inversion recovery sequence; single-shot, gradient-recalled echo-planar imaging sequence (resting-state functional MRI); and diffusion-weighted spin-echo-based echo-planar sequence (diffusion tensor imaging). ASSESSMENT: Voxel-mirrored homotopic connectivity (VMHC) value was calculated based on the functional images. Fibers passing through the regions with significant VMHC differences were identified using an atlas-guided track recognition. The mean fractional anisotropy (FA), mean diffusivity (MD), and fiber length were extracted and compared between the two groups. Finally, correlational analyses were performed to examine the relationships between abnormal interhemispheric connectivity, cognitive performances, and endocrine parameters. STATISTICAL TESTS: Two-sample t-tests were performed controlling for confounding factors, with partial correlation analysis. False discovery rate (FDR) correction was used for multiple comparisons. A P value <0.05 was considered statistically significant. RESULTS: T2DM patients exhibited significantly decreased VMHC between bilateral lingual gyrus and sensorimotor cortex. The fibers connecting lingual gyrus in patients showed significantly lower FA (P = 0.011) and shorter fiber length (P < 0.001), while the differences in sensorimotor fibers were insignificant (P = 0.096 for FA, P = 0.739 for fiber length and P = 0.150 for MD). The FA value in the lingual fibers was negatively correlated with insulin resistance (IR) level in T2DM group after FDR correction (R = -0.635). DATA CONCLUSION: We noted disruptions in interhemispheric coordination in T2DM patients, involving both functional and anatomical connectivities. IR might be a promising therapeutic target in the intervention of T2DM-related cognitive impairment. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Diabetes Mellitus Tipo 2 , Imagen de Difusión Tensora , Encéfalo/diagnóstico por imagen , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos
11.
Exp Biol Med (Maywood) ; 246(23): 2511-2521, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34342551

RESUMEN

Chronic kidney disease (CKD) is a major contributor to the development of heart failure with preserved ejection fraction (HFpEF), whereas the underlying mechanism of cardiorenal HFpEF is still elusive. The aim of this study was to investigate the role of cardiac fibrosis in a rat model of cardiorenal HFpEF and explore whether treatment with Telmisartan, an inhibitor of renin-angiotensin-aldosterone system (RAAS), can ameliorate cardiac fibrosis and preserve diastolic function in cardiorenal HFpEF. Male rats were subjected to 5/6 subtotal nephrectomy (SNX) or sham operation (Sham), and rats were allowed four weeks to recover and form a stable condition of CKD. Telmisartan or vehicle was then administered p.o. (8 mg/kg/d) for 12 weeks. Blood pressure, brain natriuretic peptide (BNP), echocardiography, and cardiac magnetic resonance imaging were acquired to evaluate cardiac structural and functional alterations. Histopathological staining, real-time polymerase chain reaction (PCR) and western blot were performed to evaluate cardiac remodeling. SNX rats showed an HFpEF phenotype with increased BNP, decreased early to late diastolic transmitral flow velocity (E/A) ratio, increased left ventricular (LV) hypertrophy and preserved ejection fraction (EF). Pathology revealed increased cardiac fibrosis in cardiorenal HFpEF rats compared with the Sham group, while chronic treatment with Telmisartan significantly decreased cardiac fibrosis, accompanied by reduced markers of fibrosis (collagen I and collagen III) and profibrotic cytokines (α-smooth muscle actin, transforming growth factor-ß1, and connective tissue growth factor). In addition, myocardial inflammation was decreased after Telmisartan treatment, which was in a linear correlation with cardiac fibrosis. Telmisartan also reversed LV hypertrophy and E/A ratio, indicating that Telmisartan can improve LV remodeling and diastolic function in cardiorenal HFpEF. In conclusion, cardiac fibrosis is central to the pathology of cardiorenal HFpEF, and RAAS modulation with Telmisartan is capable of alleviating cardiac fibrosis and preserving diastolic dysfunction in this rat model.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Síndrome Cardiorrenal/tratamiento farmacológico , Fibrosis/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Telmisartán/farmacología , Animales , Antihipertensivos/farmacología , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Síndrome Cardiorrenal/patología , Diástole/efectos de los fármacos , Modelos Animales de Enfermedad , Ecocardiografía , Fibrosis/patología , Insuficiencia Cardíaca/patología , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Masculino , Péptido Natriurético Encefálico/análisis , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Volumen Sistólico/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
12.
J Magn Reson Imaging ; 54(2): 526-536, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33622022

RESUMEN

BACKGROUND: Computed tomography (CT) and magnetic resonance imaging (MRI) are both capable of predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). However, which modality is better is unknown. PURPOSE: To intraindividually compare CT and MRI for predicting MVI in solitary HCC and investigate the added value of radiomics analyses. STUDY TYPE: Retrospective. SUBJECTS: Included were 402 consecutive patients with HCC (training set:validation set = 300:102). FIELD STRENGTH/SEQUENCE: T2-weighted, diffusion-weighted, and contrast-enhanced T1-weighted imaging MRI at 3.0T and contrast-enhanced CT. ASSESSMENT: CT- and MR-based radiomics signatures (RS) were constructed using the least absolute shrinkage and selection operator regression. CT- and MR-based radiologic (R) and radiologic-radiomics (RR) models were developed by univariate and multivariate logistic regression. The performance of the RS/models was compared between two modalities. To investigate the added value of RS, the performance of the R models was compared with the RR models in HCC of all sizes and 2-5 cm in size. STATISTICAL TESTS: Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared using the Delong test. RESULTS: Histopathologic MVI was identified in 161 patients (training set:validation set = 130:31). MRI-based RS/models tended to have a marginally higher AUC than CT-based RS/models (AUCs of CT vs. MRI, P: RS, 0.801 vs. 0.804, 0.96; R model, 0.809 vs. 0.832, 0.09; RR model, 0.835 vs. 0.872, 0.54). The improvement of RR models over R models in all sizes was not significant (P = 0.21 at CT and 0.09 at MRI), whereas the improvement in 2-5 cm was significant at MRI (P < 0.05) but not at CT (P = 0.16). DATA CONCLUSION: CT and MRI had a comparable predictive performance for MVI in solitary HCC. The RS of MRI only had significant added value for predicting MVI in HCC of 2-5 cm. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Invasividad Neoplásica , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
13.
Transl Stroke Res ; 12(1): 136-146, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32240524

RESUMEN

Regulatory T cells (Tregs) play an immunosuppressive role in various diseases, yet their function remains controversial in stroke and obscure in diabetic stroke. In the present study, Tregs were found downregulated in the peripheral blood of type 2 diabetes mellitus (T2DM) stroke models and patients compared with controls. In ischemic stroke mice (both T2DM and wild type), endogenous Tregs boosted by CD28SA increased CD206+ M2 macrophage/microglia cells, decreased infarct volumes, and improved neurological recovery. Our results demonstrated the potential of boosting Tregs for treating T2DM stroke. Furthermore, we utilized an optical imaging probe (IRD-αCD206) to target M2 macrophage/microglia cells and demonstrated its effect in visualizing M2 macrophage/microglia cells in vivo in ischemic brain tissue.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico por imagen , Macrófagos/fisiología , Imagen Óptica/métodos , Fenotipo , Accidente Cerebrovascular/diagnóstico por imagen , Linfocitos T Reguladores/fisiología , Animales , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/inmunología , Diabetes Mellitus Tipo 2/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Accidente Cerebrovascular/inmunología
14.
Front Oncol ; 10: 1196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850345

RESUMEN

Patients with HCC receiving TACE have various clinical outcomes. Several prognostic models have been proposed to predict clinical outcomes for patients with hepatocellular carcinomas (HCC) undergoing transarterial chemoembolization (TACE), but establishing an accurate prognostic model remains necessary. We aimed to develop a radiomics signature from pretreatment CT to establish a combined radiomics-clinic (CRC) model to predict survival for these patients. We compared this CRC model to the existing prognostic models in predicting patient survival. This retrospective study included multicenter data from 162 treatment-naïve patients with unresectable HCC undergoing TACE as an initial treatment from January 2007 and March 2017. We randomly allocated patients to a training cohort (n = 108) and a testing cohort (n = 54). Radiomics features were extracted from intra- and peritumoral regions on both the arterial phase and portal venous phase CT images. A radiomics signature (Rad-signature) for survival was constructed using the least absolute shrinkage and selection operator method in the training cohort. We used univariate and multivariate Cox regressions to identify associations between the Rad- signature and clinical factors of survival. From these, a CRC model was developed, validated, and further compared with previously published prognostic models including four-and-seven criteria, six-and-twelve score, hepatoma arterial-embolization prognostic scores, and albumin-bilirubin grade. The CRC model incorporated two variables: The Rad-signature (composed of features extracted from intra- and peritumoral regions on the arterial phase and portal venous phase) and tumor number. The CRC model performed better than the other seven well-recognized prognostic models, with concordance indices of 0.73 [95% confidence interval (CI) 0.68-0.79] and 0.70 [95% CI 0.62-0.82] in the training and testing cohorts, respectively. Among the seven models tested, the six-and-12 score and four-and-seven criteria performed better than the other models, with C-indices of 0.64 [95% CI 0.58-0.70] and 0.65 [95% CI 0.55-0.75] in the testing cohort, respectively. The CT radiomics signature represents an independent biomarker of survival in patients with HCC undergoing TACE, and the CRC model displayed improved predictive performance.

15.
World Neurosurg ; 136: 357-363.e2, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32001414

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a recently approved therapy for patients with drug-resistant epilepsy. To date, there is a poor understanding of the mechanism of action and lack of in vivo biomarkers. We propose a method for investigating the in vivo stimulation effects using blood-oxygen-level-dependent (BOLD) magnetic resonance imaging (MRI) and present the brain activation pattern associated with ANT DBS. METHODS: Two patients undergoing ANT DBS for epilepsy underwent BOLD MRI using a block design after the DBS was programmed to alternate ON/OFF in 30-second blocks. The scanner was triggered using surface electrophysiologic recordings to detect the DBS cycle. Nine total runs were obtained and were analyzed using a general linear model. RESULTS: Active ANT stimulation produced activation within several areas of the brain, including the thalamus, bilateral anterior cingulate and posterior cingulate cortex, precuneus, medial prefrontal cortex, amygdala, ventral tegmental area, hippocampus, striatum, and right angular gyrus. CONCLUSIONS: Using block-design BOLD MRI, we were able to show widespread activation resulting from ANT DBS. Overlap with multiple areas of both the default mode and limbic networks was shown, suggesting that these nodes may modulate the effect of seizure control with ANT DBS.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda/métodos , Adulto , Núcleos Talámicos Anteriores/diagnóstico por imagen , Núcleos Talámicos Anteriores/cirugía , Mapeo Encefálico , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/terapia , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Lineales , Imagen por Resonancia Magnética , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Procedimientos Neuroquirúrgicos/métodos , Oxígeno/sangre , Estudios Prospectivos , Técnicas Estereotáxicas , Resultado del Tratamiento
16.
Front Aging Neurosci ; 12: 594198, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384593

RESUMEN

Purpose: In Type 2 diabetes (T2DM), white matter (WM) pathology has been suggested to play an important role in the etiology of T2DM-related cognitive impairment. This study aims to investigate the integrity of the cingulum bundle (CB), a major WM tract, in T2DM patients using diffusion tensor tractography. Methods: Thirty-seven T2DM patients and 34 age-, sex- and education matched healthy controls were included and underwent diffusion tensor imaging. Tractography of bilateral CB tracts was performed and diffusion measurements were compared between the two groups. Next, brain regions with significant group differences on fractional anisotropy (FA) values were set as the region of interest (ROI), and the CB fibers that passed through were identified. Diffusion measures were extracted from these fibers to investigate their correlations with the cognitive performances and endocrine parameters. Results: T2DM patients exhibited decreased FA in bilateral CB, increased mean diffusion (MD) in the right CB, and decreased length in the left CB. Through voxel-wise comparison, the most prominent FA difference was identified in the posterior segment of the CB and the reconstructed tract was part of the retrosplenial component. Importantly, the diffusion measurements of the tract were significantly correlated with the impaired performance in executive functioning and elevated insulin resistance (IR) in the T2DM group, instead of the control group. Conclusions: The diffusion measurements in bilateral CB were altered in T2DM patients, which might reflect important neuropathologic changes in the fibers. Our study adds to knowledge about how the cingulum changes structurally along its entire length in T2DM and highlights the relationship between WM and cognitive performance. Besides, IR might be an important risk factor that warrants further exploration.

17.
Brain Behav ; 9(7): e01336, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31140760

RESUMEN

INTRODUCTION: Patients under chronic obstructive pulmonary disease (COPD) has been reported to be associated with a higher prevalence of cognitive impairment (CI). However, it is still largely unknown whether the aberrant resting-state spontaneous neuronal activity pattern reflected by the amplitude of low-frequency fluctuation (ALFF) analysis will be associated with the CI in COPD patients. MATERIALS: A total of 28 COPD patients and 26 healthy controls were enrolled in this study. Of all the subjects, structural and functional MRI data, spirometry tests performance and neuropsychological assessments of different cognitive domains were collected. Voxel-based two-sample t tests were used to detect brain regions showing differences in the ALFF value between COPD patients and healthy controls. An additional fMRI runs with supplementary oxygen delivery were employed to explore the impact of elevated partial pressure of oxygen (PaO2 ) or moderate hyperoxia on ALFF in COPD patients and healthy controls respectively. RESULTS: More extensive white matter lesion was detected in COPD patients. COPD patients exhibit decreased ALFF value in bilateral basal ganglia areas and right thalamus, and aberrant ALFF value is correlated with PaO2 and pulmonary ventilation function (FEV1%pred). COPD patients performed worse in the Digit Span Test (reverse), Digit Symbol Substitution Test, Trail-making test (A and B) than controls. After supplementary oxygen inhalation, the ALFF value of basal ganglia and right thalamus significantly increased in the controls, but not in the COPD patients. CONCLUSIONS: COPD patients mainly exhibit impaired executive function but not long-term memory in cognitive function assessment. Aberrant ALFF alteration in the deep brain may be directly related to lower PaO2 in COPD patients.


Asunto(s)
Ganglios Basales/diagnóstico por imagen , Ganglios Basales/fisiopatología , Disfunción Cognitiva/fisiopatología , Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Ventilación Pulmonar/fisiología , Mapeo Encefálico/métodos , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
18.
Neural Plast ; 2019: 8354849, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31049056

RESUMEN

Abnormal neural activity in the cerebellum has been implicated in hearing impairments, but the effects of long-term hearing loss on cerebellar function are poorly understood. To further explore the role of long-term bilateral sensorineural hearing loss on cerebellar function, we investigated hearing loss-induced changes among neural networks within cerebellar subregions and the changes in cerebellar-cerebral connectivity patterns using resting-state functional MRI. Twenty-one subjects with long-term bilateral moderate-to-severe sensorineural hearing loss and 21 matched controls with clinically normal hearing underwent MRI scanning and a series of neuropsychological tests targeting cognition and emotion. Voxel-wise functional connectivity (FC) analysis demonstrated decreased couplings between the cerebellum and other cerebral areas, including the temporal pole (TP), insula, supramarginal gyrus, inferior frontal gyrus (IFG), medial frontal gyrus, and thalamus, in long-term bilateral sensorineural hearing loss patients. An ROI-wise FC analysis found weakened interregional connections within cerebellar subdivisions. Moreover, there was a negative correlation between anxiety and FC between the left cerebellar lobe VI and left insula. Hearing ability and anxiety scores were also correlated with FC between the left cerebellar lobe VI and left TP, as well as the right cerebellar lobule VI and left IFG. Our results suggest that sensorineural hearing loss disrupts cerebellar-cerebral circuits, some potentially linked to anxiety, and interregional cerebellar connectivity. The findings contribute to a growing body showing that auditory deprivation caused by cochlear hearing loss disrupts not only activity with the classical auditory pathway but also portions of the cerebellum that communicates with other cortical networks.


Asunto(s)
Percepción Auditiva/fisiología , Cerebelo/fisiopatología , Corteza Cerebral/fisiopatología , Pérdida Auditiva Sensorineural/fisiopatología , Estimulación Acústica , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Umbral Sensorial
19.
Front Neurosci ; 13: 246, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941010

RESUMEN

Sensorineural hearing loss (SNHL), sometimes accompanied with tinnitus, is associated with dysfunctions within and outside the classical auditory pathway. The salience network, which is anchored in bilateral anterior insula and dorsal anterior cingulate cortex, has been implicated in sensory integration. Partial auditory deprivation could alter the characteristics of the salience network and other related brain areas, thereby contributing to hearing impairments-induced neuropsychiatric symptoms. To test this hypothesis, we performed fMRI scanning and neuropsychological tests on 32 subjects with long-term bilateral hearing impairment and 30 well-matched Controls. Non-directional functional connectivity and directional Granger causality analysis were used to identify aberrant spatial and temporal patterns of connections targeting bilateral anterior insula and dorsal anterior cingulate cortex. We found that the left anterior insula showed decreased connectivity with right precentral gyrus and superior frontal gyrus. The connections between the dorsal anterior cingulate cortex and middle frontal gyrus, superior parietal gyrus and supplementary motor area (SMA) were also reduced. Relative to Controls, SNHL patients showed abnormal effective connectivity of the salience network, including inferior temporal gyrus, cerebellum lobule VI, lobule VIII, precentral gyrus, middle frontal gyrus and SMA. Furthermore, correlation analysis demonstrated that some of these atypical connectivity measures were correlated with performance of neuropsychiatric tests. These findings suggest that the inefficient modulation of the salience network might contribute to the neural basis of SNHL and tinnitus, as well as associated cognition and emotion deficits.

20.
J Magn Reson Imaging ; 50(3): 787-797, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30694013

RESUMEN

BACKGROUND: The thalamus is an integrative hub conveying sensory information between cortical areas and related to cognition. However, alterations of the thalamus following partial hearing deprivation remains unknown. PURPOSE: To investigate the modifications of the thalamus and its seven subdivisions in terms of structure, function, and perfusion in subjects with sensorineural hearing loss (SNHL), as well as their associations with SNHL-induced cognitive impairments. STUDY TYPE: Cross-sectional study. SUBJECTS: Thirty-seven bilateral long-term SNHL patients and 38 well-matched controls. FIELD STRENGTH: 3 T/BOLD, T1 -weighted imaging, arterial spin labeling (ASL). ASSESSMENT: Quantitative measurements in the thalamus and subdivisions were obtained, including the relative volume, fractional amplitude of low-frequency fluctuation (fALFF) within slow 5 (0.01-0.027 Hz), slow 4 (0.027-0.073 Hz), and combined frequency (0.01-0.073 Hz), as well as the whole-brain functional connectivity. Twenty-five SNHL patients and 20 controls underwent ASL scanning. Then correlation analysis was computed between all significant changes and cognition tests. STATISTICAL TESTS: Continuous and categorical variables were compared by independent-sample t-test and chi-square test, respectively. Quantitative MRI measurement comparisons were corrected for multiple comparison, and functional connectivity (FC) analysis used two-sample t-test with false-discovery rate correction. Area under the curve (AUC) in receiver operating characteristic curve analysis was applied to evaluate the power of alterations in differentiating SNHL and controls. RESULTS: No significant difference in the relative volume and perfusion of seven thalamus subdivisions were observed, but a decrease in fALFF in SNHL. SNHL showed reduced thalamic connectivity with the cerebellum lobule VIII, ventral anterior cingulate cortex, insula, superior temporal gyrus, media temporal gyrus, medial frontal gyrus, Heschl's gyrus, and temporal pole. And some FC abnormalities exhibited positive correlations with cognitive tests and high discriminative power (0.8 < AUC < 1) in two groups. DATA CONCLUSION: SNHL led to decreased thalamic activity and widespread weakened connectivity with other brain areas. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:787-797.


Asunto(s)
Disfunción Cognitiva/complicaciones , Pérdida Auditiva Sensorineural/complicaciones , Imagen por Resonancia Magnética/métodos , Tálamo/diagnóstico por imagen , Tálamo/fisiopatología , Disfunción Cognitiva/fisiopatología , Estudios Transversales , Femenino , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...