Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 266(Pt 2): 131283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561119

RESUMEN

Glycosaminoglycan (GAG) lyases are important tools for investigating the structure of GAGs and preparing low-molecular-weight GAGs. The PL35 family, a recently established polysaccharide lyase family, should be further investigated. In this study, we discovered a new GAG lyase, CHa1, which belongs to the PL35 family. When expressed heterologously in Escherichia coli (BL21), CHa1 exhibited high expression levels and solubility. The optimal activity was observed in Tris-HCl buffer (pH 7.0) or sodium phosphate buffer (pH 8.0) at 30 °C. The specific activities towards HA, CSA, CSC, CSD, CSE, and HS were 3.81, 13.03, 36.47, 18.46, 6.46, and 0.50 U/mg protein, respectively. CHa1 digests substrate chains randomly that acting as an endolytic lyase and shows a significant preference for GlcA-containing structures, prefers larger oligosaccharides (≥UDP8) and can generate a series of oligosaccharides composed mainly of the A unit when digesting CSA. These oligosaccharides include ΔC-A, ΔC-A-A, ΔC-A-A-A, ΔC-A-A-A-A, and ΔC-A-A-A-A-A. The residues Tyr257 and His421 play crucial roles in the catalytic process, and Ser211, Asn212, Asn213, Trp214, Gln216, Lys360, Arg460 and Gln462 may participate in the binding process of CHa1. This study on CHa1 contributes to our understanding of the PL35 family and provides valuable tools for investigating the structure of GAGs.


Asunto(s)
Polisacárido Liasas , Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Polisacárido Liasas/genética , Especificidad por Sustrato , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Escherichia coli/genética , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Secuencia de Aminoácidos , Oligosacáridos/química , Oligosacáridos/metabolismo
2.
Sci Rep ; 13(1): 20112, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978313

RESUMEN

Heparin (HP) and heparan sulfate (HS) are multifunctional polysaccharides widely used in clinical therapy. Heparinases (Hepases) are enzymes that specifically catalyse HP and HS degradation, and they are valuable tools for studying the structure and function of these polysaccharides and for preparing low molecular weight heparins. In this study, by searching the NCBI database, a novel enzyme named PCHepII was discovered in the genome of the marine bacterium Puteibacter caeruleilacuae. Heterologously expressed PCHepII in Escherichia coli (BL21) has high expression levels and good solubility, active in sodium phosphate buffer (pH 7.0) at 20°C. PCHepII exhibits an enzyme activity of 254 mU/mg towards HP and shows weak degradation capacity for HS. More importantly, PCHepII prefers to catalyse the high-sulfated regions of HP and HS rather than the low-sulfated regions. Although PCHepII functions primarily as an endolytic Hepase, it mainly generates disaccharide products during the degradation of HP substrates over time. Investigations reveal that PCHepII exhibits a preference for catalysing the degradation of small substrates, especially HP tetrasaccharides. The catalytic sites of PCHepII include the residues His199, Tyr254, and His403, which play crucial roles in the catalytic process. The study and characterization of PCHepII can potentially benefit research and applications involving HP/HS, making it a promising enzyme.


Asunto(s)
Heparina , Heparitina Sulfato , Liasa de Heparina/genética , Liasa de Heparina/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Bacteroidetes/metabolismo , Oligosacáridos/química
3.
Methods Mol Biol ; 2619: 249-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662475

RESUMEN

Heparin/heparan sulfate (HP/HS) is a class of acidic polysaccharides with many potential medical applications, especially HP, and its derivatives, low molecular weight heparins (LMWHs), have been widely used as anticoagulants to treat thrombosis for decades. However, the complex structure endows HP/HS a variety of biological functions and hinders the structural and functional studies of HP/HS. Heparinases derived from bacteria are useful tools for the structural studies of HP/HS as well as the preparation of LMWHs. The enzymatic method for the structural analysis of HP/HS chains is easy to operate, requires less samples, and is low cost. Here, we describe an enzymatic approach to investigate the primary sequences of the HP/HS oligosaccharides using a recently discovered exotype heparinase.


Asunto(s)
Heparina , Heparitina Sulfato , Heparina/química , Heparitina Sulfato/química , Liasa de Heparina , Anticoagulantes , Oligosacáridos/química
4.
Nat Commun ; 12(1): 1263, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627653

RESUMEN

Heparinases (Hepases) are critical tools for the studies of highly heterogeneous heparin (HP)/heparan sulfate (HS). However, exolytic heparinases urgently needed for the sequencing of HP/HS chains remain undiscovered. Herein, a type of exolytic heparinases (exoHepases) is identified from the genomes of different bacteria. These exoHepases share almost no homology with known Hepases and prefer to digest HP rather than HS chains by sequentially releasing unsaturated disaccharides from their reducing ends. The structural study of an exoHepase (BIexoHep) shows that an N-terminal conserved DUF4962 superfamily domain is essential to the enzyme activities of these exoHepases, which is involved in the formation of a unique L-shaped catalytic cavity controlling the sequential digestion of substrates through electrostatic interactions. Further, several HP octasaccharides have been preliminarily sequenced by using BIexoHep. Overall, this study fills the research gap of exoHepases and provides urgently needed tools for the structural and functional studies of HP/HS chains.


Asunto(s)
Liasa de Heparina/metabolismo , Catálisis , Heparina/metabolismo , Electricidad Estática
5.
Front Microbiol ; 12: 775124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35140691

RESUMEN

Chondroitin sulfate (CS)/dermatan sulfate (DS) is a kind of sulfated polyanionic, linear polysaccharide belonging to glycosaminoglycan. CS/DS sulfatases, which specifically hydrolyze sulfate groups from CS/DS oligo-/polysaccharides, are potential tools for structural and functional studies of CD/DS. However, only a few sulfatases have been reported and characterized in detail to date. In this study, two CS/DS sulfatases, PB_3262 and PB_3285, were identified from the marine bacterium Photobacterium sp. QA16 and their action patterns were studied in detail. PB_3262 was characterized as a novel 4-O-endosulfatase that can effectively and specifically hydrolyze the 4-O-sulfate group of disaccharide GlcUAß1-3GalNAc(4-O-sulfate) but not GlcUAß1-3GalNAc(4,6-O-sulfate) and IdoUAα1-3GalNAc(4-O-sulfate) in CS/DS oligo-/polysaccharides, which is very different from the identified 4-O-endosulfatases in the substrate profile. In contrast, PB_3285 specifically hydrolyzes the 6-O-sulfate groups of GalNAc(6-O-sulfate) residues located at the reducing ends of the CS chains and is the first recombinantly expressed 6-O-exosulfatase to effectively act on CS oligosaccharides.

6.
Int J Biol Macromol ; 165(Pt B): 2314-2325, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33132124

RESUMEN

Chondroitin sulfate (CS)/dermatan sulfate (DS) lyases play important roles in structural and functional studies of CS/DS. In this study, a novel CS/DS lyase (enCSase) was identified from the genome of the marine bacterium Photobacterium sp. QA16. This enzyme is easily heterologously expressed and purified as highly active form against various CS, DS and hyaluronic acid (HA). Under the optimal conditions, the specific activities of this enzyme towards CSA, CSC, CSD, CSE, DS and HA were 373, 474, 171, 172, 141 and 97 U/mg of proteins, respectively. As an endolytic enzyme, enCSase degrades HA to unsaturated hexa- and tetrasaccharides but CS/DS to unsaturated tetra- and disaccharides as the final products. Sequencing analysis showed that the structures of tetrasaccharides in the final products of CS variants were not unique but were highly variable, indicating the randomness of substrate degradation by this enzyme. Further studies showed that the smallest substrate of enCSase was octasaccharide for HA but hexasaccharide for CS/DS, which could explain why this enzyme cannot degrade HA hexa- and tetrasaccharides and CS/DS tetrasaccharides further. It is believed that enCSase may be a very useful tool for structural and functional studies and related applications of CS/DS and HA.


Asunto(s)
Condroitín Liasas/metabolismo , Sulfatos de Condroitina/química , Dermatán Sulfato/análogos & derivados , Photobacterium/enzimología , Biocatálisis , Condroitín Liasas/química , Condroitín Liasas/genética , Dermatán Sulfato/química , Mutación/genética , Filogenia , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Sulfatos , Factores de Tiempo
7.
Biotechnol Biofuels ; 12: 260, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31700543

RESUMEN

BACKGROUND: Macroalgae and microalgae, as feedstocks for third-generation biofuel, possess competitive strengths in terms of cost, technology and economics. The most important compound in brown macroalgae is alginate, and the synergistic effect of endolytic and exolytic alginate lyases plays a crucial role in the saccharification process of transforming alginate into biofuel. However, there are few studies on the synergistic effect of endolytic and exolytic alginate lyases, especially those from the same bacterial strain. RESULTS: In this study, the endolytic alginate lyase AlyPB1 and exolytic alginate lyase AlyPB2 were identified from the marine bacterium Photobacterium sp. FC615. These two enzymes showed quite different and novel enzymatic properties whereas behaved a strong synergistic effect on the saccharification of alginate. Compared to that when AlyPB2 was used alone, the conversion rate of alginate polysaccharides to unsaturated monosaccharides when AlyPB1 and AlyPB2 acted on alginate together was dramatically increased approximately sevenfold. Furthermore, we found that AlyPB1 and AlyPB2 acted the synergistic effect basing on the complementarity of their substrate degradation patterns, particularly due to their M-/G-preference and substrate-size dependence. In addition, a novel method for sequencing alginate oligosaccharides was developed for the first time by combining the 1H NMR spectroscopy and the enzymatic digestion with the exo-lyase AlyPB2, and this method is much simpler than traditional methods based on one- and two-dimensional NMR spectroscopy. Using this strategy, the sequences of the final tetrasaccharide and pentasaccharide product fractions produced by AlyPB1 were easily determined: the tetrasaccharide fractions contained two structures, ΔGMM and ΔMMM, at a molar ratio of 1:3.2, and the pentasaccharide fractions contained four structures, ΔMMMM, ΔMGMM, ΔGMMM, and ΔGGMM, at a molar ratio of ~ 1:1.5:3.5:5.25. CONCLUSIONS: The identification of these two novel alginate lyases provides not only excellent candidate tool-type enzymes for oligosaccharide preparation but also a good model for studying the synergistic digestion and saccharification of alginate in biofuel production. The novel method for oligosaccharide sequencing described in this study will offer a very useful approach for structural and functional studies on alginate.

8.
Front Microbiol ; 9: 167, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472911

RESUMEN

Endo-type alginate lyases usually degrade alginate completely into various size-defined unsaturated oligosaccharide products (≥disaccharides), while exoenzymes primarily produce monosaccharide products including saturated mannuronate (M) and guluronate (G) units and particularly unsaturated Δ units. Recently, two bifunctional alginate lyases have been identified as endolytic but M- and G-producing with variable action modes. However, endolytic Δ-producing alginate lyases remain undiscovered. Herein, a new Flammeovirga protein, Aly2, was classified into the polysaccharide lyase 7 superfamily. The recombinant enzyme and its truncated protein showed similar stable biochemical characteristics. Using different sugar chains as testing substrates, we demonstrated that the two enzymes are bifunctional while G-preferring, endolytic whereas monosaccharide-producing. Furthermore, the catalytic module of Aly2 can vary the action modes depending on the terminus type, molecular size, and M/G content of the substrate, thereby yielding different levels of M, G, and Δ units. Notably, the enzymes preferentially produce Δ units when digesting small size-defined oligosaccharide substrates, particularly the smallest substrate (unsaturated tetrasaccharide fractions). Deletion of the non-catalytic region of Aly2 caused weak changes in the action modes and biochemical characteristics. This study provided extended insights into alginate lyase groups with variable action modes for accurate enzyme use.

9.
Chem Commun (Camb) ; 53(90): 12209-12212, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29077109

RESUMEN

Based on multiple interactions and fluorescence quenching, we report a novel homogeneous detection method for Glypican-3 which shows a series of significant advantages, including low cost, ease of preparation, rapid response, and high sensitivity and has great potential in the clinical diagnosis of hepatocellular carcinoma and proteoglycan detection.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Glipicanos/sangre , Neoplasias Hepáticas/diagnóstico , Carcinoma Hepatocelular/sangre , Fluorescencia , Humanos , Neoplasias Hepáticas/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...