Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(18): 11955-11963, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38656985

RESUMEN

The performance of all-solid-state lithium batteries (ASSLBs) is significantly impacted by lithium interfacial instability, which originates from the dynamic chemical, morphological, and mechanical changes during deep Li plating and stripping. In this study, we introduce a facile approach to generate a conductive and regenerative solid interface, enhancing both the Li interfacial stability and overall cell performance. The regenerative interface is primarily composed of nanosized lithium iodide (nano-LiI), which originates in situ from the adopted solid-state electrolyte (SSE). During cell operation, the nano-LiI interfacial layer can reversibly diffuse back and forth in synchronization with Li plating and stripping. The interface and dynamic process improve the adhesion and Li+ transport between the Li anode and SSE, facilitating uniform Li plating and stripping. As a result, the metallic Li anode operates stably for over 1000 h at high current densities and even under elevated temperatures. By using metallic Li as the anode directly, we demonstrate stable cycling of all-solid-state Li-sulfur batteries for over 250 cycles at an areal capacity of >2 mA h cm-2 and room temperature. This study offers insights into the design of regenerative and Li+-conductive interfaces to tackle solid interfacial challenges for high-performance ASSLBs.

2.
Biochem Biophys Res Commun ; 685: 149156, 2023 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-37913694

RESUMEN

E3 ubiquitin ligases play critical roles in regulating plant response to salt stress. Arabidopsis Tóxicos En Levadura (ATL) is a subfamily of RING-type E3 ubiquitin ligases widely conserved in plant species. ATL genes have been shown to be involved in regulating plant response to biotic or abiotic stresses. We previously found that a pair of ATL genes, ATL31 and ATL6 positively regulated plant innate immunity. However, whether ATL31/6 are also involved in salt stress response remains to be investigated. Here, we demonstrate that ATL31/6 are induced by salt stress. The atl31 atl6 double mutant exhibits increased salt tolerance compared to the wild-type plants, while transgenic plants overexpressing ATL31 are more salt-sensitive. Notably, ATL31 and ATL6 do not participate in the abscisic acid (ABA) response. Furthermore, NaCl treatment induces the proteasomal degradation of ATL31 proteins. Together, we demonstrate that ATL31/6 positively regulate plant tolerance to salt stress, which is independent of ABA, and our work reveals that ATL31/6 are involved in regulating plant response to both biotic and abiotic stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Estrés Salino/genética , Estrés Fisiológico , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Nat Commun ; 14(1): 4624, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532719

RESUMEN

Pathogen-associated molecular patterns (PAMPs) trigger plant innate immunity that acts as the first line of inducible defense against pathogen infection. A receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) functions as a signaling hub immediately downstream of multiple pattern recognition receptors (PRRs). It is known that PLANT U-BOX PROTEIN 25 (PUB25) and PUB26 ubiquitinate BIK1 and mediate BIK1 degradation. However, how BIK1 homeostasis is maintained is not fully understood. Here, we show that two closely related ubiquitin ligases, RING DOMAIN LIGASE 1 (RGLG1) and RGLG2, preferentially associate with the hypo-phosphorylated BIK1 and promote the association of BIK1 with the co-receptor for several PRRs, BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). PUB25 interacts with RGLG2 and mediates its degradation. In turn, RGLG2 represses the ubiquitin ligase activity of PUB25. RGLG1/2 suppress PUB25-mediated BIK1 degradation, promote BIK1 protein accumulation, and positively regulate immune signaling in a ubiquitin ligase activity-dependent manner. Our work reveals how BIK1 homeostasis is maintained by the interplay of different ubiquitin ligases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Botrytis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilación , Arabidopsis/metabolismo , Ligasas/metabolismo , Ubiquitina/metabolismo , Proteostasis , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Homeostasis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Inmunidad de la Planta/fisiología
4.
J Plant Physiol ; 287: 154049, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37423042

RESUMEN

Mycotoxin contamination of foods and feeds is a global problem. Fusaric acid (FA) is a mycotoxin produced by Fusarium species that are phytopathogens of many economically important plant species. FA can cause programmed cell death (PCD) in several plant species. However, the signaling mechanisms of FA-induced cell death in plants are largely unknown. Here we showed that FA induced cell death in the model plant Arabidopsis thaliana, and MPK3/6 phosphorylation was triggered by FA in Arabidopsis. Both the acid nature and the radical of FA are required for its activity in inducing MPK3/6 activation and cell death. Expression of the constitutively active MKK5DD resulted in the activation of MPK3/6 and promoted the FA-induced cell death. Our work demonstrates that the MKK5-MPK3/6 cascade positively regulates FA-induced cell death in Arabidopsis and also provides insight into the mechanisms of how cell death is induced by FA in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Micotoxinas , Arabidopsis/metabolismo , Ácido Fusárico/farmacología , Ácido Fusárico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Micotoxinas/metabolismo , Muerte Celular
5.
J Plant Physiol ; 283: 153967, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36924537

RESUMEN

Fucoidans are polysaccharides that consist predominantly of sulfated L-fucoses, from which, fucoidan oligosaccharides (FOSs) are prepared through different methods. Fucoidan has versatile physiological activities, like antiviral functions against SARS CoV-2 and bioactivitiy in enhancing immune responses. Although fucoidan or FOS has been widely used in mammals as functional foods and new drugs, its application in plants is still very limited. Moreover, whether fucoidan or its derived hydrolytic products can trigger immune responses in plants remained unknown. In this work, we demonstrate that the fucoidan enzymatic hydrolysate (FEH) prepared from Sargassum hemiphyllum triggers various immune responses, such as ROS production, MAPK activation, gene expression reprogramming, callose deposition, stomatal closure, and plant resistance to the bacterial strain Pseudomonas syringae pv. tomato (Pst) DC3000. Notably, FEH did not induce Arabidopsis root growth inhibition at the concentration used for triggering other immune responses. Our work suggests that EHF can potentially be used as a non-microbial elicitor in agricultural practices to protect plants from pathogen infection.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , COVID-19 , Sargassum , Sargassum/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pseudomonas syringae/fisiología , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
6.
New Phytol ; 237(4): 1270-1284, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36333900

RESUMEN

Plant innate immunity is tightly regulated. The Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE28 (CPK28) functions as a negative immune regulator. We recently demonstrate that CPK28 undergoes ubiquitination that is mediated by two ubiquitin ligases, ARABIDOPSIS TÓXICOS EN LEVADURA31 (ATL31) and ATL6, which results in its proteasomal degradation. CPK28 undergoes both intermolecular autophosphorylation and BIK1-mediated phosphorylation. However, whether the phosphorylation status of CPK28 dictates its ubiquitination and degradation is unknown yet. We used immune response analysis, transient degradation system, ubiquitination assays, co-immunoprecipitation, and other biochemical and genetic approaches to investigate the effect of the phosphorylation status of CPK28 on its degradation mediated by ATL31/6. We found the mutation of Ser318 (a site of both intermolecular autophosphorylation and BIK1-mediated phosphorylation) or a BIK1 phosphorylation site on CPK28 leads to its compromised association with ATL31 and reduced ubiquitination by ATL31. Moreover, we confirm the previous findings that two CPK28s can interact with each other, which likely promotes the intermolecular autophosphorylation. We also show that the phosphorylation status of CPK28 in turn affects its intermolecular association. We demonstrate that the phosphorylation status of CPK28 affects its degradation mediated by ATL31. Our findings reveal a link between phosphorylation of CPK28 and its ubiquitination and degradation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
ACS Appl Mater Interfaces ; 14(28): 32035-32042, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35816730

RESUMEN

The all-solid-state battery (ASSB) is a promising next-generation energy storage technology for both consumer electronics and electric vehicles because of its high energy density and improved safety. Sulfide solid-state electrolytes (SSEs) have merits of low density, high ionic conductivity, and favorable mechanical properties compared to oxide ceramic and polymer materials. However, mass production and processing of sulfide SSEs remain a grand challenge because of their poor moisture stability. Here, we report a reversible surface coating strategy for enhancing the moisture stability of sulfide SSEs using amphipathic organic molecules. An ultrathin layer of 1-bromopentane is coated on the sulfide SSE surface (e.g., Li7P2S8Br0.5I0.5) via Van der Waals force. 1-Bromopentane has more negative adsorption energy with SSEs than H2O based on first-principles calculations, thereby enhancing the moisture stability of SSEs because the hydrophobic long-chain alkyl tail of 1-bromopentane repels water molecules. Moreover, this amphipathic molecular layer has a negligible effect on ionic conductivity and can be removed reversibly by heating at low temperatures (e.g., 160 °C). This finding opens a new pathway for the surface engineering of moisture-sensitive SSEs and other energy materials, thereby speeding up their deployment in ASSBs.

8.
Adv Sci (Weinh) ; 9(21): e2201640, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35524632

RESUMEN

Lithium-sulfur (Li-S) batteries are one of the most promising next-generation energy storage technologies due to their high theoretical energy and low cost. However, Li-S cells with practically high energy still suffer from a very limited cycle life with reasons which remain unclear. Here, through cell study under practical conditions, it is proved that an internal short circuit (ISC) is a root cause of early cell failure and is ascribed to the crosstalk between the S cathode and Li anode. The cathode topography affects S reactions through influencing the local resistance and electrolyte distribution, particularly under lean electrolyte conditions. The inhomogeneous reactions of S cathodes are easily mirrored by the Li anodes, resulting in exaggerated localized Li plating/stripping, Li filament formation, and eventually cell ISC. Manipulating cathode topography is proven effective to extend the cell cycle life under practical conditions. The findings of this work shed new light on the electrode design for extending cycle life of high-energy Li-S cells, which are also applicable for other rechargeable Li or metal batteries.

9.
Biochem Biophys Res Commun ; 587: 113-118, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34871998

RESUMEN

Receptor-like cytoplasmic kinase (RLCK) subfamily VII members are involved in diverse biological processes, like reproduction, immunity, growth and development. Ubiquitination and proteasomal degradation of a RLCK VII member, BOTRYTIS-INDUCED KINASE1 (BIK1) play important roles in regulating immune signaling. It remains largely unknown whether most other RLCK VII members undergo ubiquitination and proteasomal degradation. Here, we select the 6-member RLCK VII-4 to examine the potential proteasomal degradation of its members. We find that three closely related RLCK VII-4 members, PBL38 (AvrPphB SUSCEPTIBLE1-LIKE38), PCRK1 (PTI-COMPROMISED RECEPTOR-LIKE CYTOPLASMIC KINASE1), and PCRK2 are under proteasomal control, while the other members in this group are not. Moreover, we demonstrate that PCRK2 undergoes ubiquitination and proteasomal in a kinase activity-dependent manner. However, the plasma membrane (PM) localization of PCRK2 is not required for its degradation. Our work suggests that many other RLCK VII members may undergo ubiquitination and proteasomal degradation to modulate their homeostasis and cellular functions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Unión Proteica , Proteolisis , Protoplastos/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Ubiquitinación
10.
Plant Physiol ; 188(1): 241-254, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34609517

RESUMEN

Disulfide bonds play essential roles in the folding of secretory and plasma membrane proteins in the endoplasmic reticulum (ER). In eukaryotes, protein disulfide isomerase (PDI) is an enzyme catalyzing the disulfide bond formation and isomerization in substrates. The Arabidopsis (Arabidopsis thaliana) genome encodes diverse PDIs including structurally distinct subgroups PDI-L and PDI-M/S. It remains unclear how these AtPDIs function to catalyze the correct disulfide formation. We found that one Arabidopsis ER oxidoreductin-1 (Ero1), AtERO1, can interact with multiple PDIs. PDI-L members AtPDI2/5/6 mainly serve as an isomerase, while PDI-M/S members AtPDI9/10/11 are more efficient in accepting oxidizing equivalents from AtERO1 and catalyzing disulfide bond formation. Accordingly, the pdi9/10/11 triple mutant exhibited much stronger inhibition than pdi1/2/5/6 quadruple mutant under dithiothreitol treatment, which caused disruption of disulfide bonds in plant proteins. Furthermore, AtPDI2/5 work synergistically with PDI-M/S members in relaying disulfide bonds from AtERO1 to substrates. Our findings reveal the distinct but overlapping roles played by two structurally different AtPDI subgroups in oxidative protein folding in the ER.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Catálisis/efectos de los fármacos , Disulfuros/metabolismo , Oxidación-Reducción/efectos de los fármacos , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína/efectos de los fármacos , Variación Genética , Genotipo , Mutación , Proteína Disulfuro Isomerasas/genética
11.
Plant Cell ; 34(1): 679-697, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34599338

RESUMEN

Immune responses are triggered when pattern recognition receptors recognize microbial molecular patterns. The Arabidopsis (Arabidopsis thaliana) receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE1 (BIK1) acts as a signaling hub of plant immunity. BIK1 homeostasis is maintained by a regulatory module in which CALCIUM-DEPENDENT PROTEIN KINASE28 (CPK28) regulates BIK1 turnover via the activities of two E3 ligases. Immune-induced alternative splicing of CPK28 attenuates CPK28 function. However, it remained unknown whether CPK28 is under proteasomal control. Here, we demonstrate that CPK28 undergoes ubiquitination and 26S proteasome-mediated degradation, which is enhanced by flagellin treatment. Two closely related ubiquitin ligases, ARABIDOPSIS TÓXICOS EN LEVADURA31 (ATL31) and ATL6, specifically interact with CPK28 at the plasma membrane; this association is enhanced by flagellin elicitation. ATL31/6 directly ubiquitinate CPK28, resulting in its proteasomal degradation. Furthermore, ATL31/6 promotes the stability of BIK1 by mediating CPK28 degradation. Consequently, ATL31/6 positively regulate BIK1-mediated immunity. Our findings reveal another mechanism for attenuating CPK28 function to maintain BIK1 homeostasis and enhance immune responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Inmunidad de la Planta/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-34649493

RESUMEN

BACKGROUND: Syphilis is a chronic infectious disease caused by Treponema pallidum (Tp) infection, which causes local inflammation in the host. TpF1 is an oligomeric protein expressed by the Tp-infected host that can induce the host immune response. There are few studies regarding the role of TpF1 in macrophage activation and the subsequent release of cytokines. OBJECTIVE: The objective of this study is to elucidate the effects of TpF1 on the pathological process of Syphilis. In addition, we explored how purinergic 2X7 (P2X7R) induced NOD-like receptor family protein 3 (NLRP3) -dependent release of interleukin-1ß (IL-1ß) and the underlying mechanisms. METHODS: We explored the influence of TpF1 on cytokine release by macrophages using qRT-PCR and ELISA. The specific phenotype of activated macrophages was determined by flow cytometry. RESULTS: TpF1 was able to activate macrophages and induce the M1 macrophage phenotype. Moreover, TpF1 activated the NLRP3 inflammasome in macrophages, which was mediated by P2X7R. CONCLUSION: The Tp-induced protein TpF1 is able to induce macrophage activation and P2X7R-induced NLRP3-dependent release of IL-1ß. Our findings provide a theoretical basis for clarifying the clinical symptoms and pathogenesis of syphilis.


Asunto(s)
Antígenos Bacterianos , Activación de Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Sífilis , Antígenos Bacterianos/inmunología , Citocinas/metabolismo , Humanos , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Sífilis/inmunología , Treponema pallidum
13.
Biochem Biophys Res Commun ; 588: 55-60, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34952470

RESUMEN

The endoplasmic reticulum (ER) is equipped with protein disulfide isomerases (PDIs), molecular chaperons, and other folding enzymes to ensure that newly synthesized proteins in the ER are properly folded. Molecular chaperons and PDIs can form complex to promote protein folding in the ER of mammalian cells. In plants, many PDIs associate with each other and function cooperatively in oxidative protein folding. As a plant unique protein disulfide isomerase, Arabidopsis thaliana PDI11 (AtPDI11) demonstrates oxidative protein folding activities and works synergistically with AtPDI2/5. However, whether AtPDI11 associates with molecular chaperons or AtPDIs in catalyzing disulfide formation remained unknown. Here, we find that AtPDI11 interacts with ER resident lectin chaperones calreticulin 1 (CRT1) and CRT2. Furthermore, the D domain, but not the a or a' domain of AtPDI11 provides the biding sites for its interaction with CRT1/2. Moreover, the P domain of CRT1 is responsible for its interaction with AtPDI11. Our work implies that Arabidopsis CRT1/2 may specifically recruit AtPDI11 to assist the folding of glycoproteins in the ER.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lectinas , Chaperonas Moleculares , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Lectinas/metabolismo , Chaperonas Moleculares/metabolismo , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad
14.
Biochem Biophys Res Commun ; 533(3): 481-485, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32977945

RESUMEN

N-glycosylation is an important protein modification that generally occurs at the Asn residue in an Asn-X-Ser/Thr sequon. Ero1 and its homologs play key roles in catalyzing the oxidative folding in the endoplasmic reticulum (ER). Recently, we found that Arabidopsis (Arabidopsis thaliana) ERO1 and AtERO2 displayed different characteristics in catalyzing oxidative protein folding in the ER. All known Ero1s are glycosylated proteins, including AtERO1 and AtERO2 that were analyzed when they were transiently translated in mammalian cells. However, the exact N-glycosylation sites on AtERO1 and AtERO2 remains to be determined. In this work, using a plant transient expression system, we identified the N-glycosylation sites on both AtERO1 and AtERO2. We found that AtERO1 has one N-glycosylation site, while AtERO2 contains two, all in the N-X-S/T sequons. Interestingly, we found that Ero1 homologs from human, rice, soybean and Arabidopsis, all have a conserved N-glycosylation site near the inner active site that reduces molecular oxygen and provides the oxidizing equivalents. The identification of N-glycosylation sites on AtERO1/2 proteins will help understand the function of N-glycosylation not only in AtERO1/2, but also in other Ero1 homologs.


Asunto(s)
Proteínas de Arabidopsis/química , Glicoproteínas de Membrana/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Glicosilación , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
15.
Biochem Biophys Res Commun ; 531(4): 503-507, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32807500

RESUMEN

Plant innate immunity varies with age and plant developmental stages. Recently, we reported that Arabidopsis thaliana microRNA miR172b regulates FLS2 transcription through two transcription factors: TARGET OF EAT1 (TOE1) and TOE2. Although the flg22-triggered immune responses were investigated in 2-d-old or even younger toe1/toe2 mutant and miR172b over expression (OE) transgenic plants, the FLS2-mediated immune responses in older plants remain uncharacterized yet. In this work, we analyzed the flg22-triggered immune response in 6-d-old toe1/toe2 and miR172b OE plants. We found that unlike 2-d-old plants, 6-d-old Col-0, toe1/toe2 and miR172b OE plants exhibit comparable flg22-triggered immune responses. Strikingly, miR172b precursor in 6-d-old Col-0 plants upon flg22 treatment reached to a very high level, consequently, the TOE1/2 protein level under this condition was very low or almost undetectable, which explains why 6-d-old WT seedlings are very similar to toe1/toe2 seedlings or miR172b OE plants with respect to the flg22-triggered immune responses. Taken together, our study reveals that miR172b-TOE1/2 module regulates plant innate immunity in an age-dependent manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Inmunidad Innata/genética , MicroARNs/inmunología , Inmunidad de la Planta/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/inmunología , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Pseudomonas syringae/patogenicidad , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/microbiología , Factores de Tiempo
16.
Nat Commun ; 10(1): 4597, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601812

RESUMEN

While high sulfur loading has been pursued as a key parameter to build realistic high-energy lithium-sulfur batteries, less attention has been paid to the cathode porosity, which is much higher in sulfur/carbon composite cathodes than in traditional lithium-ion battery electrodes. For high-energy lithium-sulfur batteries, a dense electrode with low porosity is desired to minimize electrolyte intake, parasitic weight, and cost. Here we report the profound impact on the discharge polarization, reversible capacity, and cell cycling life of lithium-sulfur batteries by decreasing cathode porosities from 70 to 40%. According to the developed mechanism-based analytical model, we demonstrate that sulfur utilization is limited by the solubility of lithium-polysulfides and further conversion from lithium-polysulfides to Li2S is limited by the electronically accessible surface area of the carbon matrix. Finally, we predict an optimized cathode porosity to maximize the cell level volumetric energy density without sacrificing the sulfur utilization.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Azufre , Electroquímica/métodos , Electrodos , Litio/química , Porosidad , Sulfuros/química
17.
Plant Physiol ; 180(4): 2022-2033, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31138621

RESUMEN

Disulfide bonds are essential for the folding of the eukaryotic secretory and membrane proteins in the endoplasmic reticulum (ER), and ER oxidoreductin-1 (Ero1) and its homologs are the major disulfide donors that supply oxidizing equivalents in the ER. Although Ero1 homologs in yeast (Saccharomyces cerevisiae) and mammals have been extensively studied, the mechanisms of plant Ero1 functions are far less understood. Here, we found that both Arabidopsis (Arabidopsis thaliana) ERO1 and its homolog AtERO2 are required for oxidative protein folding in the ER. The outer active site, the inner active site, and a long-range noncatalytic disulfide bond are required for AtERO1's function. Interestingly, AtERO1 and AtERO2 also exhibit significant differences. The ero1 plants are more sensitive to reductive stress than the ero2 plants. In vivo, both AtERO1 and AtERO2 have two distinct oxidized isoforms (Ox1 and Ox2), which are determined by the formation or breakage of the putative regulatory disulfide. AtERO1 is mainly present in the Ox1 redox state, while more AtERO2 exists in the Ox2 state. Furthermore, AtERO1 showed much stronger oxidative protein-folding activity than AtERO2 in vitro. Taken together, both AtERO1 and AtERO2 are required to regulate efficient and faithful oxidative protein folding in the ER, but AtERO1 may serves as the primary sulfhydryl oxidase relative to AtERO2.


Asunto(s)
Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Arabidopsis/metabolismo , Oxidación-Reducción , Pliegue de Proteína , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(9): 3494-3501, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808744

RESUMEN

Rice (Oryza sativa L.) is a chilling-sensitive staple crop that originated in subtropical regions of Asia. Introduction of the chilling tolerance trait enables the expansion of rice cultivation to temperate regions. Here we report the cloning and characterization of HAN1, a quantitative trait locus (QTL) that confers chilling tolerance on temperate japonica rice. HAN1 encodes an oxidase that catalyzes the conversion of biologically active jasmonoyl-L-isoleucine (JA-Ile) to the inactive form 12-hydroxy-JA-Ile (12OH-JA-Ile) and fine-tunes the JA-mediated chilling response. Natural variants in HAN1 diverged between indica and japonica rice during domestication. A specific allele from temperate japonica rice, which gained a putative MYB cis-element in the promoter of HAN1 during the divergence of the two japonica ecotypes, enhances the chilling tolerance of temperate japonica rice and allows it to adapt to a temperate climate. The results of this study extend our understanding of the northward expansion of rice cultivation and provide a target gene for the improvement of chilling tolerance in rice.


Asunto(s)
Adaptación Fisiológica/genética , Oryza/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Clima , Ciclopentanos/metabolismo , Variación Genética , Isoleucina/análogos & derivados , Isoleucina/genética , Isoleucina/metabolismo , Oryza/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética
19.
New Phytol ; 222(3): 1405-1419, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30685894

RESUMEN

The plant hormones brassinosteroids (BRs) modulate plant growth and development. Cysteine (Cys) residues located in the extracellular domain of a protein are of importance for protein structure by forming disulfide bonds. To date, the systematic study of the functional significance of Cys residues in BR-insensitive 1 (BRI1) is still lacking. We used brassinolide-induced exogenous bri1-EMS-Suppressor 1 (BES1) dephosphorylation in Arabidopsis thaliana protoplasts as a readout, took advantage of the dramatic decrease of BRI1 protein levels during protoplast isolation, and of the strong phosphorylation of BES1 by BR-insensitive 2 (BIN2) in protoplasts, and developed a protoplast transient system to identify critical Cys sites in BRI1. Using this system, we identified a set of critical Cys sites in BRI1, as substitution of these Cys residues with alanine residues greatly compromised the function of BRI1. Moreover, we identified two negative regulators of BR signaling, pattern-triggered immunity compromised RLCK1 (PCRK1) and PCRK2, that were previously known to positively regulate innate immunity signaling. This work not only provides insight into the functional importance of critical Cys residues in stabilizing the superhelical conformation of BRI1-leucine-rich-repeat, but also reveals that PCRK1/2 can inversely modulate BR and plant immune signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Brasinoesteroides/farmacología , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Fosforilación/efectos de los fármacos , Inmunidad de la Planta/efectos de los fármacos , Proteínas Quinasas/química , Estructura Secundaria de Proteína , Protoplastos/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos
20.
Plant Cell ; 30(11): 2779-2794, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30337428

RESUMEN

Innate immunity plays a vital role in protecting plants and animals from pathogen infections. Immunity varies with age in both animals and plants. However, little is known about the ontogeny of plant innate immunity during seedling development. We report here that the Arabidopsis (Arabidopsis thaliana) microRNA miR172b regulates the transcription of the immune receptor gene FLAGELLIN-SENSING2 (FLS2) through TARGET OF EAT1 (TOE1) and TOE2, which directly bind to the FLS2 promoter and inhibit its activity. The level of miR172b is very low in the early stage of seedling development but increases over time, which results in decreased TOE1/2 protein accumulation and, consequently, increased FLS2 transcription and the ontogeny of FLS2-mediated immunity during seedling development. Our study reveals a role for the miR172b-TOE1/2 module in regulating plant innate immunity and elucidates a regulatory mechanism underlying the ontogeny of plant innate immunity.plantcell;30/11/2779/FX1F1fx1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Inmunidad Innata/fisiología , Proteínas Nucleares/metabolismo , Inmunidad de la Planta/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Inmunidad Innata/genética , MicroARNs/genética , Proteínas Nucleares/genética , Inmunidad de la Planta/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...