Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Environ Virol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570420

RESUMEN

As a natural nonflavonoid polyphenol compound, resveratrol is the main functional component of Reynoutria japonica and has anti-inflammatory, antioxidant, antiviral, and other physiological activities. In this study, the effect of resveratrol on the viability of RAW264.7 cells was examined, and murine norovirus (MNV-1) was used as a surrogate for human norovirus to evaluate the inhibitory effect of resveratrol. The concentrations of resveratrol resulting in 50% cytotoxicity (CC50) for RAW264.7 cells were 21.32 and 24.97 µg/mL after 24 and 48 h of incubation, respectively, and resveratrol at a concentration lower than the half-effective inhibitory concentration (EC50) could not damage cell DNA. The EC50 of resveratrol on MNV-1 in infected RAW264.7 cells was determined to equal 5.496 µg/mL. After RAW264.7 cells, virus, and a fresh mixture of virus and RAW264.7 cells were treated with resveratrol solution for 1 h (denoted cell pre-treatment, virus pre-treatment, and mixture coprocessing), the RAW264.7 cells obtained after cell pre-treatment exhibited lower virus infection, and MNV-1 obtained after virus pre-treatment and mixture coprocessing showed a decreased infectious capacity. The inhibition ratio of resveratrol on MNV-1 did not significantly differ between the treatments at 4 and 25 °C or among the various pH values except for the lower acidic condition (pH 2). TEM revealed significant changes in the morphology of MNV-1 after treatment with resveratrol, and molecular docking indicated that resveratrol strongly binds to the viral capsid protein of MNV-1. In addition, resveratrol regulated the expression of cytokine that protects against MNV-1 infection. Therefore, at a lower concentration, resveratrol, a natural component from Reynoutria japonica, exerts an inhibitory effect on MNV-1 growth and could be used as a safe additive in food products to improve the nutritional status and control norovirus.

2.
Heliyon ; 10(3): e25167, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333799

RESUMEN

In this work, a novel ternary nanocomposite of PEI/RuSi-MWCNTs was designed and synthesized for the first time, which an ultrasensitive and self-enhanced electrochemiluminescent (ECL) aptasensor was developed for the detection of profenofos residues in vegetables. The self-enhanced complex PEI-Ru (II) enhanced the emission and stability of ECL, and the multi-walled carbon nanotubes (MWCNTs) acted as an excellent carrier and signal amplification. The PEI/RuSi-MWCNTs were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS). The incorporation of gold nanoparticles (AuNPs) improved the performance of the sensor and provided a platform for the immobilization of the aptamer. The results of the experiment showed that the presence of profenofos significantly suppressed the electrochemiluminescence intensity of the sensor. The detection sensitivity of the aptamer sensor was in the range of 1 × 10-2 to 1 × 103 ng/mL. Under optimal conditions, the limit of detection (LOD) of the sensor for profenofos was 1.482 × 10-3 ng/mL. The sensor had excellent stability, reproducibility and specificity. The recoveries of the sensor ranged from 92.29 % to 106.47 % in real sample tests.

3.
FASEB J ; 38(3): e23455, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38308636

RESUMEN

Recent evidence suggests the anti-inflammatory effect of carrageenan oligosaccharides (COS). The effects of COS on intestinal injury induced by 0.6% sodium dodecyl sulfate (SDS) and the molecular mechanisms involved were investigated in this study. 0.625, 1.25, and 2.5 mg/mL COS in diet had no toxic effect in flies, and they could all prolong SDS-treated female flies' survival rate. 1.25 mg/mL COS prevented the development of inflammation by improving the intestinal barrier integrity and maintaining the intestinal morphology stability, inhibited the proliferation of intestine stem cells (ISCs), and the production of lysosomes induced by SDS, accompanied by a decrease in the expression of autophagy-related genes. Moreover, COS decreased the active oxygen species (ROS) content in gut and increased the antioxidant activity in SDS-induced female flies, while COS still played a role in increasing survival rate and decreasing intestinal leakage in CncC-RNAi flies. The improvement of anti-inflammation capacity may be associated with the regulation of intestinal microflora with COS supplementation for Drosophila melanogaster. COS changed the gut microbiota composition, and COS had no effect on germ-free (GF) flies. It is highlighted that COS could not work in Relish-RNAi flies, indicating relish is required for COS to perform beneficial effects. These results provide insights into the study of gut microbiota interacting with COS to modulate intestinal inflammation in specific hosts.


Asunto(s)
Drosophila melanogaster , Microbioma Gastrointestinal , Animales , Femenino , Carragenina/farmacología , Inflamación , Intestinos , Oligosacáridos/farmacología
4.
J Med Food ; 27(4): 348-358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387003

RESUMEN

Ginseng is an ancient medicinal and edible plant with many health benefits, and can serve as a drug and dietary supplement, but there are few relevant studies on its use to ease ultraviolet (UV) irradiation damage. After 0.8 mg/mL ginseng extract (GE) was added to the medium of female Drosophila melanogaster subjected to UV irradiation, the lifespan, climbing ability, sex ratio, developmental cycle, and antioxidant capacity of flies were examined to evaluate the GE function. In addition, the underlying mechanism by which GE enhances the irradiation tolerance of D. melanogaster was explored. With GE supplementation, female flies subjected to UV irradiation exhibited an extension in their lifespan, enhancement in their climbing ability, improvement in their offspring sex ratio, and restoration of the normal development cycle by increasing their antioxidant activity. Finally, further experiments indicated that GE could enhance the irradiation tolerance of female D. melanogaster by upregulating the gene expressions of SOD, GCL, and components of the autophagy signaling pathway. Finally, the performance of r4-Gal4;UAS-AMPKRNAi flies confirmed the regulatory role of the autophagy signaling pathway in mitigating UV irradiation injury.


Asunto(s)
Drosophila melanogaster , Panax , Animales , Drosophila melanogaster/genética , Transducción de Señal , Antioxidantes , Autofagia
5.
Huan Jing Ke Xue ; 44(7): 3855-3863, 2023 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-37438284

RESUMEN

In this study, we collected precipitation from February 2020 to February 2022 and the surface water and groundwater in the wet (August) and dry (October) periods of 2021 in the Shandian River Basin. Stable isotope technology was used to analyze the temporal and spatial changes in the hydrogen and oxygen stable isotopes of the "three waters" in the basin to explore the relationship between water isomorphs and environmental factors and to reveal the water conversion relationship using the end element mixing model. The results showed that the slope and intercept of the local precipitation line were smaller than the local atmospheric precipitation line. The water vapor mainly came from westerly water vapor, polar air mass, and East Asian monsoon circulation. The precipitation isotope had a significant temperature effect. In terms of time, the isotopes of surface water and groundwater were more enriched in the dry season than those in the wet season, and the d-excess values of surface water and groundwater were lower than the global average, indicating strong local evaporation. Spatially, the δ18O value of the rivers had the same change characteristics in the wet and dry seasons, showing gradual enrichment from the upstream to the downstream, and the groundwater δ18O high value area was unevenly distributed in space, with groundwater δ18O values becoming more depleted with the increase in burial depth. The highest slope of the groundwater water line was 7.87 in the wet season, which was very close to the slope of the local atmospheric precipitation line and river water line, indicating that there was a complex hydraulic connection between the "three waters" in the wet season. The surface water in the study area was mainly supplied by precipitation during the wet season and then by groundwater runoff. These results can provide a theoretical basis for revealing the hydrological cycle in arid and semi-arid areas.

6.
Ying Yong Sheng Tai Xue Bao ; 32(6): 1980-1988, 2021 Jun.
Artículo en Chino | MEDLINE | ID: mdl-34212602

RESUMEN

We examined the characteristics of water use in typical tree species of arbor and shrub in Hunshandake Sandy Land, Populus cathayana and Salix gordejevii, in the different seasons, with the aim to provide theoretical basis for the structural optimization of the artificial shelterbelt. Samples of precipitation, soil water, groundwater and stem water of the two vegetation were collected, and their distribution characteristics of δD-δ18O were analyzed by hydrogen and oxygen stable isotope technology. The contribution rate of these potential water source to the arbor and shrub species were calculated using multi-source linear mixing model. The precipitation equation line in the study area was δD=7.84δ18O+9.12, while soil moisture lines in the dry and wet season were δD=3.56δ18O-41.28 and δD=4.30δ18O-42.02, respectively. The δD-δ18O of soil water and stem water in the two seasons were lower than the precipitation δD-δ18O, indicating that both of them were strongly affected by the evaporation. Soil water contents in the shallow layer were strongly affected by rainfall and evaporation, with substantial fluctuation. With the increases of soil depth, soil water content tended to be stable, and the hydrogen and oxygen isotope in each soil layer showed significant differences. In the dry season, P. cathayana mainly utilized soil water in 0-40 cm and 120-200 cm layers, with contribution rates of 50.2% and 31.5%, respectively. S. gordejevii mainly absorbed soil water in 20-40 cm and 60-100 cm layers, and the contribution rates were 53.2% and 22.9%, respectively. In the wet season, the greatest contribution of soil water to P. cathayana was mainly in the 0-40 cm soil layer, accounting for 72.8%. S. gordejevii was mainly in the 0-20 cm soil water, evenly utilized the deeper soil water and groundwater. Due to the differences in root depth and distribution of the arbor and shrub, their water use strategies differed in different seasons, which was conducive to the stability of the shelterbelt community and tree species coexistence in Hunshandake Sandy Land. We proposed that the mixed planting species with different root depth should be considered in the future planting of artificial shelterbelt, which would help rationally utilize water resources and maintain the stability of sandy land ecosystem.


Asunto(s)
Ecosistema , Suelo , China , Isótopos de Oxígeno/análisis , Agua
7.
Biosensors (Basel) ; 11(6)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205540

RESUMEN

In this paper, a bimetallic sensor based on graphene-hexagonal boron nitride (hBN) heterostructure is theoretically studied. The sensitivity of the sensor can be improved by enhancing the Goos-Hänchen (GH) shift in the infrared band. The theoretical results show that adjusting the Fermi level, the number of graphene layers and the thickness of hBN, a GH shift of 182.09 λ can be obtained. Moreover, sensitivity of 2.02 × 105 λ/RIU can be achieved with monolayer graphene, the thickness of gold layer is 20 nm, silver layer is 15 nm, and the hBN thickness of 492 nm. This heterogeneous infrared sensor has the advantages of high sensitivity and strong stability. The research results will provide a theoretical basis for the design of a new high-sensitivity infrared band sensor.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Compuestos de Boro , Oro , Grafito/química , Plata
8.
Colloids Surf B Biointerfaces ; 197: 111356, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33007505

RESUMEN

The biofilm of Bacillus cereus on the surface of X80 pipeline steel was investigated from forming to shedding. Based on the observed biofilm morphology and pit analysis, it was found that B. cereus biofilm could stimulate X80 pipeline steel pitting corrosion, which was attributed to the nitrate reduction of bacteria beneath the biofilm. Electrochemical measurements and general corrosion rate results showed that B. cereus biofilm can better accelerate X80 pipeline steel corrosion compared to sterile solutions. Interestingly, the results also showed that thick biofilms had a slight tendency to inhibit the general corrosion process compared with its formation and exfoliation, which was confirmed by scanning Kelvin probe. The corrosion rate of X80 pipeline steel in artificial Beijing soil is closely related to the state of the biofilm, and nitrate reducing bacteria accelerates the occurrence of pits. The corresponding corrosion mechanisms are proposed.


Asunto(s)
Bacillus cereus , Acero , Beijing , Biopelículas , Corrosión , Nitratos , Suelo
9.
Opt Lett ; 45(23): 6482-6485, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258842

RESUMEN

The design of a reconfigurable terahertz (THz) switch by using flexible L-shaped metamaterial (FLM), which is composed of dual-layer L-shaped metamaterials on polydimethylsiloxane substrate, which has three resonances at 0.57, 1.05, and 1.52 THz, is presented. By stretching the FLM along the x-axis direction, the transmission intensity is increased gradually at the transverse electric mode (TE) and reduced at the transverse magnetic (TM) mode, respectively. Reversely, by stretching the FLM along the y-axis direction, the transmission intensity is reduced gradually at the TE mode and increased at the TM mode, respectively. These electromagnetic responses of FLM provide the optical-logic behaviors with programmable characteristics by stretching FLM at different polarized light. It indicates that the proposed FLM could be used for the dual/triple-band switching, polarization switching, and programmable switching applications.

10.
Nanomaterials (Basel) ; 10(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485805

RESUMEN

A sickle-shaped metamaterial (SSM) based biochemical sensor with multiple resonances was investigated in the terahertz frequency range. The electromagnetic responses of SSM were found to be four resonances, namely dipolar, quadrupolar, octupolar and hexadecapolar plasmon resonances. They were generated from the interactions between SSM and perpendicularly incident terahertz waves. The sensing performances of SSM-based biochemical sensors were evaluated by changing ambient environments and analyte varieties. The highest values of sensitivity and figure of merit (FOM) for SSM covered with analyte thin-films were 471 GHz/RIU (refraction index unit) and 94 RIU-1, respectively. In order to further investigate the biosensing ability of the proposed SSM device, dielectric hemispheres and microfluidic chips were adopted to imitate dry and hydrous biological specimens, respectively. The results show that the sensing abilities of SSM-based biochemical sensors could be enhanced by increasing either the number of hemispheres or the channel width of the microfluidic chip. The highest sensitivity was 405 GHz/RIU for SSM integrated with microfluidic chips. Finally, three more realistic models were simulated to imitate real sensing situations, and the corresponding highest sensitivity was 502 GHz/RIU. The proposed SSM device paves the way to possible uses in biochemical sensing applications.

11.
Chemphyschem ; 16(1): 99-103, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25294685

RESUMEN

High-quality Bi2 S3 nanowires are synthesized by chemical vapor deposition and their intrinsic photoresponsive and field-effect characteristics are explored in detail. Among the studied Au-Au, Ag-Ag, and Au-Ag electrode pairs, the device with stepwise band alignment of asymmetric Au-Ag electrodes has the highest mobility. Furthermore, it is shown that light can cause a sevenfold decrease of the on/off ratio. This can be explained by the photoexcited charge carriers that are more beneficial to the increase of Ioff than Ion . The photoresponsive properties of the asymmetric Au-Ag electrode devices were also explored, and the results show a photoconductive gain of seven with a rise time of 2.9 s and a decay time of 1.6 s.

12.
Nanoscale ; 6(24): 14652-6, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25372063

RESUMEN

Recently, molybdenum disulfide (MoS(2)) has become a popular material due to its unique electrical and chemical properties, and its use as a potential substitute for graphene. Herein, we report a new two-step method by utilizing thermal evaporation-sulfurization to synthesize MoS(2) which possesses an innovative micro-ring structure. The average statistical values of the height, width and external diameter were 69 nm, 0.3 µm and 5.0 µm, respectively. Then the mechanism for the growth of such MoS(2) micro-rings was proposed. A device based on the MoS(2) micro-ring was prepared by electron beam lithography, and its electrical transport properties were determined at different temperatures.

13.
Chemphyschem ; 15(12): 2510-6, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25099253

RESUMEN

Bi2S3 single-crystalline nanowires are synthesized through a hydrothermal method and then fabricated into single nanowire photodetectors. Due to the different contact barrier between the gold electrode and Bi2S3 nanowires, two kinds of devices with different electrical contacts are obtained and their photoresponsive properties are investigated. The non-ohmic contact devices show larger photocurrent gains and shorter response times than those of ohmic contact devices. Furthermore, the influence of a focused laser on the barrier height between gold and Bi2S3 is explored in both kinds of devices and shows that laser illumination on the Au-Bi2S3 interface can greatly affect the barrier height in non-ohmic contact devices, while keeping it intact in ohmic contact devices. A model based on the surface photovoltage effect is used to explain this phenomenon.

14.
Sci Rep ; 4: 5442, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24962077

RESUMEN

Transition metal dichalcogenides (TMDCs) have recently been the focus of extensive research activity owing to their fascinating physical properties. As a new member of TMDCs, Mo doped ReSe2 (Mo:ReSe2) is an octahedral structure semiconductor being optically biaxial and highly anisotropic, different from most of hexagonal layered TMDCs with optically uniaxial and relatively high crystal symmetry. We investigated the effects of physisorption of gas molecule on the few-layer Mo:ReSe2 nanosheet based photodetectors. We compared the photoresponse of the as-exfoliated device with annealed device both in air or ammonia (NH3) environment. After annealing at sub-decomposition temperatures, the Mo:ReSe2 photodetectors show a better photoresponsivity (~55.5 A/W) and higher EQE (10893%) in NH3 than in air. By theoretical investigation, we conclude that the physisorption of NH3 molecule on Mo:ReSe2 monolayer can cause the charge transfer between NH3 molecule and Mo:ReSe2 monolayer, increasing the n-type carrier density of Mo:ReSe2 monolayer. The prompt photoswitching, high photoresponsivity and different sensitivity to surrounding environment from the few-layer anisotropic Mo:ReSe2 can be used to design multifunctional optoelectronic and sensing devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...