Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106146

RESUMEN

Z-lines are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-line-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-line proteome in vivo. We found palmdelphin (PALMD) as a novel Z-line-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed transverse tubules (T-tubules) and their association with sarcoplasmic reticulum, which formed the Z-line-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with disrupted localization of T-tubule markers caveolin-3 (CAV3) and junctophilin-2 (JPH2) and the reduction of nexilin (NEXN) protein, a crucial Z-line-associated protein that is essential for both Z-line and JMC structures and functions. PALMD was found to interact with NEXN and enhance its protein stability while the Nexn mRNA level was not affected. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis. Highlights: In vivo proximity proteomics uncover novel Z-line components that are undetected in in vitro proximity proteomics in cardiomyocytes.PALMD is a novel Z-line-associated protein that is dispensable for baseline cardiomyocyte function in vivo.PALMD mitigates cardiac dysfunction and myocardial injury after repeated isoproterenol insults.PALMD stabilizes NEXN, an essential Z-line-associated regulator of the junctional membrane complex and cardiac systolic function.

2.
bioRxiv ; 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37131696

RESUMEN

Understanding how the atrial and ventricular chambers of the heart maintain their distinct identity is a prerequisite for treating chamber-specific diseases. Here, we selectively inactivated the transcription factor Tbx5 in the atrial working myocardium of the neonatal mouse heart to show that it is required to maintain atrial identity. Atrial Tbx5 inactivation downregulated highly chamber specific genes such as Myl7 and Nppa , and conversely, increased the expression of ventricular identity genes including Myl2 . Using combined single nucleus transcriptome and open chromatin profiling, we assessed genomic accessibility changes underlying the altered atrial identity expression program, identifying 1846 genomic loci with greater accessibility in control atrial cardiomyocytes compared to KO aCMs. 69% of the control-enriched ATAC regions were bound by TBX5, demonstrating a role for TBX5 in maintaining atrial genomic accessibility. These regions were associated with genes that had higher expression in control aCMs compared to KO aCMs, suggesting they act as TBX5-dependent enhancers. We tested this hypothesis by analyzing enhancer chromatin looping using HiChIP and found 510 chromatin loops that were sensitive to TBX5 dosage. Of the loops enriched in control aCMs, 73.7% contained anchors in control-enriched ATAC regions. Together, these data demonstrate a genomic role for TBX5 in maintaining the atrial gene expression program by binding to atrial enhancers and preserving tissue-specific chromatin architecture of atrial enhancers.

3.
Cardiovasc Res ; 119(1): 221-235, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35576474

RESUMEN

AIMS: Calcium-handling capacity is a major gauge of cardiomyocyte maturity. Ryanodine receptor 2 (RYR2) is the pre-dominant calcium channel that releases calcium from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) to activate cardiomyocyte contraction. Although RYR2 was previously implied as a key regulator of cardiomyocyte maturation, the mechanisms remain unclear. The aim of this study is to solve this problem. METHODS AND RESULTS: We performed Cas9/AAV9-mediated somatic mutagenesis to knockout RYR2 specifically in cardiomyocytes in mice. We conducted a genetic mosaic analysis to dissect the cell-autonomous function of RYR2 during cardiomyocyte maturation. We found that RYR2 depletion triggered ultrastructural and transcriptomic defects relevant to cardiomyocyte maturation. These phenotypes were associated with the drastic activation of ER stress pathways. The ER stress alleviator tauroursodeoxycholic acid partially rescued the defects in RYR2-depleted cardiomyocytes. Overexpression of ATF4, a key ER stress transcription factor, recapitulated defects in RYR2-depleted cells. Integrative analysis of RNA-Seq and bioChIP-Seq data revealed that protein biosynthesis-related genes are the major direct downstream targets of ATF4. CONCLUSION: RYR2-regulated ER homeostasis is essential for cardiomyocyte maturation. Severe ER stress perturbs cardiomyocyte maturation primarily through ATF4 activation. The major downstream effector genes of ATF4 are related to protein biosynthesis.


Asunto(s)
Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratones , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Respuesta de Proteína Desplegada , Señalización del Calcio
4.
Nat Cardiovasc Res ; 2(10): 881-898, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38344303

RESUMEN

Understanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor Tbx5 in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial Tbx5 inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression. Using concurrent single nucleus transcriptome and open chromatin profiling, genomic accessibility differences were identified between control and Tbx5 KO aCMs, revealing that 69% of the control-enriched ATAC regions were bound by TBX5. Genes associated with these regions were downregulated in KO aCMs, suggesting they function as TBX5-dependent enhancers. Comparing enhancer chromatin looping using H3K27ac HiChIP identified 510 chromatin loops sensitive to TBX5 dosage, and 74.8% of control-enriched loops contained anchors in control-enriched ATAC regions. Together, these data demonstrate TBX5 maintains the atrial gene expression program by binding to and preserving the tissue-specific chromatin architecture of atrial enhancers.

5.
Front Cardiovasc Med ; 9: 900428, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711374

RESUMEN

Objectives: Heparan sulfate (HS) forms heparan sulfate proteoglycans (HSPGs), such as syndecans (SDCs) and glypicans (GPCs), to perform biological processes in the mammals. This study aimed to explore the role of HS in dilated cardiomyopathy (DCM). Methods: Two high throughput RNA sequencing, two microarrays, and one single-cell RNA sequencing dataset of DCM hearts were downloaded from the Gene Expression Omnibus (GEO) database and integrated for bioinformatics analyses. Differential analysis, pathway enrichment, immunocytes infiltration, subtype identification, and single-cell RNA sequencing analysis were used in this study. Results: The expression level of most HSPGs was significantly upregulated in DCM and was closely associated with immune activation, cardiac fibrosis, and heart failure. Syndecan2 (SDC2) was highly associated with collagen I and collagen III in cardiac fibroblasts of DCM hearts. HS biosynthetic pathway was activated, while the only enzyme to hydrolyze HS was downregulated. Based on the expression of HSPGs, patients with DCM were classified into three molecular subtypes, i.e., C1, C2, and C3. Cardiac fibrosis and heart failure were more severe in the C1 subtype. Conclusion: Heparan sulfate is closely associated with immune activation, cardiac fibrosis, and heart failure in DCM. A novel molecular classification of patients with DCM is established based on HSPGs.

6.
Nat Commun ; 13(1): 2185, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449169

RESUMEN

Cardiac excitation-contraction coupling requires dyads, the nanoscopic microdomains formed adjacent to Z-lines by apposition of transverse tubules and junctional sarcoplasmic reticulum. Disruption of dyad architecture and function are common features of diseased cardiomyocytes. However, little is known about the mechanisms that modulate dyad organization during cardiac development, homeostasis, and disease. Here, we use proximity proteomics in intact, living hearts to identify proteins enriched near dyads. Among these proteins is CMYA5, an under-studied striated muscle protein that co-localizes with Z-lines, junctional sarcoplasmic reticulum proteins, and transverse tubules in mature cardiomyocytes. During cardiac development, CMYA5 positioning adjacent to Z-lines precedes junctional sarcoplasmic reticulum positioning or transverse tubule formation. CMYA5 ablation disrupts dyad architecture, dyad positioning at Z-lines, and junctional sarcoplasmic reticulum Ca2+ release, leading to cardiac dysfunction and inability to tolerate pressure overload. These data provide mechanistic insights into cardiomyopathy pathogenesis by demonstrating that CMYA5 anchors junctional sarcoplasmic reticulum to Z-lines, establishes dyad architecture, and regulates dyad Ca2+ release.


Asunto(s)
Acoplamiento Excitación-Contracción , Retículo Sarcoplasmático , Calcio/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo
7.
Biochem Soc Trans ; 49(6): 2581-2589, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34854917

RESUMEN

The store-operated calcium (Ca2+) entry (SOCE) is the Ca2+ entry mechanism used by cells to replenish depleted Ca2+ store. The dysregulation of SOCE has been reported in metastatic cancer. It is believed that SOCE promotes migration and invasion by remodeling the actin cytoskeleton and cell adhesion dynamics. There is recent evidence supporting that SOCE is critical for the spatial and the temporal coding of Ca2+ signals in the cell. In this review, we critically examined the spatiotemporal control of SOCE signaling and its implication in the specificity and robustness of signaling events downstream of SOCE, with a focus on the spatiotemporal SOCE signaling during cancer cell migration, invasion and metastasis. We further discuss the limitation of our current understanding of SOCE in cancer metastasis and potential approaches to overcome such limitation.


Asunto(s)
Calcio/metabolismo , Metástasis de la Neoplasia , Neoplasias/metabolismo , Señalización del Calcio , Humanos , Transporte Iónico , Neoplasias/patología
8.
Circulation ; 143(19): 1894-1911, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33793303

RESUMEN

BACKGROUND: Mutations in tafazzin (TAZ), a gene required for biogenesis of cardiolipin, the signature phospholipid of the inner mitochondrial membrane, causes Barth syndrome (BTHS). Cardiomyopathy and risk of sudden cardiac death are prominent features of BTHS, but the mechanisms by which impaired cardiolipin biogenesis causes cardiac muscle weakness and arrhythmia are poorly understood. METHODS: We performed in vivo electrophysiology to define arrhythmia vulnerability in cardiac-specific TAZ knockout mice. Using cardiomyocytes derived from human induced pluripotent stem cells and cardiac-specific TAZ knockout mice as model systems, we investigated the effect of TAZ inactivation on Ca2+ handling. Through genome editing and pharmacology, we defined a molecular link between TAZ mutation and abnormal Ca2+ handling and contractility. RESULTS: A subset of mice with cardiac-specific TAZ inactivation developed arrhythmias, including bidirectional ventricular tachycardia, atrial tachycardia, and complete atrioventricular block. Compared with wild-type controls, BTHS-induced pluripotent stem cell-derived cardiomyocytes had increased diastolic Ca2+ and decreased Ca2+ transient amplitude. BTHS-induced pluripotent stem cell-derived cardiomyocytes had higher levels of mitochondrial and cellular reactive oxygen species than wild-type controls, which activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). Activated CaMKII phosphorylated the RYR2 (ryanodine receptor 2) on serine 2814, increasing Ca2+ leak through RYR2. Inhibition of this reactive oxygen species-CaMKII-RYR2 pathway through pharmacological inhibitors or genome editing normalized aberrant Ca2+ handling in BTHS-induced pluripotent stem cell-derived cardiomyocytes and improved their contractile function. Murine Taz knockout cardiomyocytes also exhibited elevated diastolic Ca2+ and decreased Ca2+ transient amplitude. These abnormalities were ameliorated by Ca2+/calmodulin-dependent protein kinase II or reactive oxygen species inhibition. CONCLUSIONS: This study identified a molecular pathway that links TAZ mutation with abnormal Ca2+ handling and decreased cardiomyocyte contractility. This pathway may offer therapeutic opportunities to treat BTHS and potentially other diseases with elevated mitochondrial reactive oxygen species production.


Asunto(s)
Síndrome de Barth/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Síndrome de Barth/fisiopatología , Humanos , Ratones , Ratones Noqueados
9.
Biochim Biophys Acta Mol Cell Res ; 1868(5): 118970, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33529640

RESUMEN

Sphingosine-1-phosphate (S1P) has been shown to possess pro-hypertrophic properties in the heart, but the detailed molecular mechanism that underlies the pathological process is rarely explored. In the present study, we aim to explore the role of S1P-mediated intracellular Ca2+ signaling, with a focus on sarcoplasmic reticulum (SR)-mitochondria communication, in cardiomyocyte hypertrophy. Cultured neonatal rat ventricular myocytes (NRVMs) displayed significantly hypertrophic growth after treatment with 1 µmol/L S1P for 48 h, as indicated by the cell surface area or mRNA expressions of hypertrophic marker genes (ANP, BNP and ß-MHC). Importantly, mitochondrial Ca2+ and reactive oxygen species (ROS) levels were dramatically elevated upon S1P stimulation, and pharmacological blockage of which abolished NRVM hypertrophy. 0.5 Hz electrical pacing induced similar cytosolic Ca2+ kinetics to S1P stimulation, but unaffected the peak of mitochondrial [Ca2+]. With interference of the expression of type 2 inositol 1,4,5-trisphosphate receptors (IP3R2), which are unemployed in electrical paced Ca2+ activity but may be activated by S1P, alteration in mitochondrial Ca2+ as well as the hypertrophic effect in NRVMs under S1P stimulation were attenuated. The hypertrophic effect of S1P can also be abolished by pharmacological block of S1PR1 or Gi signaling. Collectively, our study highlights the mechanistic role of IP3R2-mediated excess SR-mitochondria Ca2+ transport in S1P-induced cardiomyocyte hypertrophy.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Lisofosfolípidos/farmacología , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/patología , Retículo Sarcoplasmático/metabolismo , Esfingosina/análogos & derivados , Animales , Animales Recién Nacidos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Hipertrofia , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Esfingosina/farmacología
11.
J Clin Invest ; 130(9): 4663-4678, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32749237

RESUMEN

Oxidant stress can contribute to health and disease. Here we show that invertebrates and vertebrates share a common stereospecific redox pathway that protects against pathological responses to stress, at the cost of reduced physiological performance, by constraining Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity. MICAL1, a methionine monooxygenase thought to exclusively target actin, and MSRB, a methionine reductase, control the stereospecific redox status of M308, a highly conserved residue in the calmodulin-binding (CaM-binding) domain of CaMKII. Oxidized or mutant M308 (M308V) decreased CaM binding and CaMKII activity, while absence of MICAL1 in mice caused cardiac arrhythmias and premature death due to CaMKII hyperactivation. Mimicking the effects of M308 oxidation decreased fight-or-flight responses in mice, strikingly impaired heart function in Drosophila melanogaster, and caused disease protection in human induced pluripotent stem cell-derived cardiomyocytes with catecholaminergic polymorphic ventricular tachycardia, a CaMKII-sensitive genetic arrhythmia syndrome. Our studies identify a stereospecific redox pathway that regulates cardiac physiological and pathological responses to stress across species.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Microfilamentos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Mutación Missense , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Taquicardia Ventricular/enzimología , Sustitución de Aminoácidos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Oxigenasas de Función Mixta/genética , Miocardio/patología , Miocitos Cardíacos/patología , Oxidación-Reducción , Taquicardia Ventricular/genética , Taquicardia Ventricular/patología
12.
Biophys Rev ; 12(4): 1007-1017, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32661902

RESUMEN

Cardiac excitation-contraction (EC) coupling, which links plasma membrane depolarization to activation of cardiomyocyte contraction, occurs at dyads, the nanoscopic microdomains formed by apposition of transverse (T)-tubules and junctional sarcoplasmic reticulum (jSR). In a dyadic junction, EC coupling occurs through Ca2+-induced Ca2+ release. Membrane depolarization opens voltage-gated L-type Ca2+ channels (LTCCs) in the T-tubule. The resulting influx of extracellular Ca2+ into the dyadic cleft opens Ca2+ release channels known as ryanodine receptors (RYRs) in the jSR, leading to the rapid increase in cytosolic Ca2+ that triggers sarcomere contraction. The efficacy of LTCC-RYR communication greatly affects a myriad of downstream intracellular signaling events, and it is controlled by many factors, including T-tubule and jSR structure, spatial distribution of ion channels, and regulatory proteins that closely regulate the activities of channels within dyads. Alterations in dyad architecture and/or channel activity are seen in many types of heart disease. This review will focus on the current knowledge regarding cardiac dyad structure and function, their alterations in heart failure, and new approaches to study the composition and function of dyads.

13.
Nat Commun ; 10(1): 5277, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754099

RESUMEN

Mitochondrial calcium ([Ca2+]mito) dynamics plays vital roles in regulating fundamental cellular and organellar functions including bioenergetics. However, neuronal [Ca2+]mito dynamics in vivo and its regulation by brain activity are largely unknown. By performing two-photon Ca2+ imaging in the primary motor (M1) and visual cortexes (V1) of awake behaving mice, we find that discrete [Ca2+]mito transients occur synchronously over somatic and dendritic mitochondrial network, and couple with cytosolic calcium ([Ca2+]cyto) transients in a probabilistic, rather than deterministic manner. The amplitude, duration, and frequency of [Ca2+]cyto transients constitute important determinants of the coupling, and the coupling fidelity is greatly increased during treadmill running (in M1 neurons) and visual stimulation (in V1 neurons). Moreover, Ca2+/calmodulin kinase II is mechanistically involved in modulating the dynamic coupling process. Thus, activity-dependent dynamic [Ca2+]mito-to-[Ca2+]cyto coupling affords an important mechanism whereby [Ca2+]mito decodes brain activity for the regulation of mitochondrial bioenergetics to meet fluctuating neuronal energy demands as well as for neuronal information processing.


Asunto(s)
Encéfalo/metabolismo , Señalización del Calcio , Calcio/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Corteza Visual/metabolismo , Animales , Encéfalo/citología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Microscopía de Fluorescencia por Excitación Multifotónica , Mitocondrias/ultraestructura , Corteza Motora/citología , Corteza Motora/metabolismo , Corteza Visual/citología
14.
Circulation ; 140(5): 390-404, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311300

RESUMEN

BACKGROUND: Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS: Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS: In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS: Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Taquicardia Ventricular/patología , Taquicardia Ventricular/fisiopatología , Ingeniería de Tejidos/métodos , Potenciales de Acción/fisiología , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/química , Miocitos Cardíacos/química , Optogenética/métodos
15.
Circulation ; 140(5): 405-419, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31155924

RESUMEN

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited cardiac arrhythmia characterized by adrenergically triggered arrhythmias, is inadequately treated by current standard of care. Ca2+/calmodulin-dependent protein kinase II (CaMKII), an adrenergically activated kinase that contributes to arrhythmogenesis in heart disease models, is a candidate therapeutic target in CPVT. However, translation of CaMKII inhibition has been limited by the need for selective CaMKII inhibition in cardiomyocytes. Here, we tested the hypothesis that CaMKII inhibition with a cardiomyocyte-targeted gene therapy strategy would suppress arrhythmia in CPVT mouse models. METHODS: We developed AAV9-GFP-AIP, an adeno-associated viral vector in which a potent CaMKII inhibitory peptide, autocamtide-2-related inhibitory peptide [AIP], is fused to green fluorescent protein (GFP) and expressed from a cardiomyocyte selective promoter. The vector was delivered systemically. Arrhythmia burden was evaluated with invasive electrophysiology testing in adult mice. AIP was also tested on induced pluripotent stem cells derived from patients with CPVT with different disease-causing mutations to determine the effectiveness of our proposed therapy on human induced pluripotent stem cell-derived cardiomyocytes and different pathogenic genotypes. RESULTS: AAV9-GFP-AIP was robustly expressed in the heart without significant expression in extracardiac tissues, including the brain. Administration of AAV9-GFP-AIP to neonatal mice with a known CPVT mutation (RYR2R176Q/+) effectively suppressed ventricular arrhythmias induced by either ß-adrenergic stimulation or programmed ventricular pacing, without significant proarrhythmic effect. Intravascular delivery of AAV9-GFP-AIP to adolescent mice transduced ≈50% of cardiomyocytes and was effective in suppressing arrhythmia in CPVT mice. Induced pluripotent stem cell-derived cardiomyocytes derived from 2 different patients with CPVT with different pathogenic mutations demonstrated increased frequency of abnormal calcium release events, which was suppressed by a cell-permeable form of AIP. CONCLUSIONS: This proof-of-concept study showed that AAV-mediated delivery of a CaMKII peptide inhibitor to the heart was effective in suppressing arrhythmias in a murine model of CPVT. CaMKII inhibition also reversed the arrhythmia phenotype in human CPVT induced pluripotent stem cell-derived cardiomyocyte models with different pathogenic mutations.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Terapia Genética/métodos , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia , Adenoviridae/genética , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Ratones , Ratones Transgénicos , Taquicardia Ventricular/enzimología
16.
J Cell Sci ; 132(6)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30814332

RESUMEN

STIM1- and Orai1-mediated store-operated Ca2+ entry (SOCE) constitutes the major Ca2+ influx in almost all electrically non-excitable cells. However, little is known about the spatiotemporal organization at the elementary level. Here, we developed Orai1-tethered or palmitoylated biosensor GCaMP6f to report subplasmalemmal Ca2+ signals. We visualized spontaneous discrete and long-lasting transients ('Ca2+ glows') arising from STIM1-Orai1 in invading melanoma cells. Ca2+ glows occurred preferentially in single invadopodia and at sites near the cell periphery under resting conditions. Re-addition of external Ca2+ after store depletion elicited spatially synchronous Ca2+ glows, followed by high-rate discharge of asynchronous local events. Knockout of STIM1 or expression of the dominant-negative Orai1-E106A mutant markedly decreased Ca2+ glow frequency, diminished global SOCE and attenuated invadopodial formation. Functionally, invadopodial Ca2+ glows provided high Ca2+ microdomains to locally activate Ca2+/calmodulin-dependent Pyk2 (also known as PTK2B), which initiates the SOCE-Pyk2-Src signaling cascade required for invasion. Overall, the discovery of elemental Ca2+ signals of SOCE not only unveils a previously unappreciated gating mode of STIM1-Orai1 channels in situ, but also underscores a critical role of the spatiotemporal dynamics of SOCE in orchestrating complex cell behaviors such as invasion. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Señalización del Calcio/fisiología , Quinasa 2 de Adhesión Focal/metabolismo , Proteínas de Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Técnicas Biosensibles , Calcio/metabolismo , Canales de Calcio/metabolismo , Línea Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Microscopía Confocal , Imagen Molecular/métodos
17.
Genome Biol ; 20(1): 24, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30712515

RESUMEN

BACKGROUND: Recent studies have revealed thousands of A-to-I RNA editing events in primates, but the origination and general functions of these events are not well addressed. RESULTS: Here, we perform a comparative editome study in human and rhesus macaque and uncover a substantial proportion of macaque A-to-I editing sites that are genomically polymorphic in some animals or encoded as non-editable nucleotides in human. The occurrence of these recent gain and loss of RNA editing through DNA point mutation is significantly more prevalent than that expected for the nearby regions. Ancestral state analyses further demonstrate that an increase in recent gain of editing events contribute to the over-representation, with G-to-A mutation site as a favorable location for the origination of robust A-to-I editing events. Population genetics analyses of the focal editing sites further reveal that a portion of these young editing events are evolutionarily significant, indicating general functional relevance for at least a fraction of these sites. CONCLUSIONS: Overall, we report a list of A-to-I editing events that recently originated through G-to-A mutations in primates, representing a valuable resource to investigate the features and evolutionary significance of A-to-I editing events at the population and species levels. The unique subset of primate editome also illuminates the general functions of RNA editing by connecting it to particular gene regulatory processes, based on the characterized outcome of a gene regulatory level in different individuals or primate species with or without these editing events.


Asunto(s)
Evolución Molecular , Macaca mulatta/genética , Edición de ARN , Animales , Humanos , Mutación
18.
Methods Mol Biol ; 1843: 63-68, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30203277

RESUMEN

The store-operated calcium entry (SOCE) is the predominant calcium entry mechanism in cancer cell and other non-exciting cells. In the last few years, there is rapidly accumulating evidence supporting that SOCE is dysregulated in many types of cancer. The hyperactive SOCE in tumor cells is spatially and temporally coded to promote cell proliferation, migration, and invasion. In this chapter, we describe two protocols to measure SOCE in tumor cells. The first protocol employs fluorescent microplate readers and could be adapted for high-throughput screening. The second protocol takes advantage of laser scanning confocal microscopy and can be used to resolve the high-resolution spatial and temporal coding of SOCE signals in single cells. These protocols are useful tools to uncover the dysregulation of SOCE signaling in tumor malignancy.


Asunto(s)
Compuestos de Anilina , Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Imagen Molecular , Xantenos , Línea Celular Tumoral , Movimiento Celular , Análisis de Datos , Humanos , Microscopía Confocal , Imagen Molecular/métodos
19.
Nat Commun ; 9(1): 2015, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789568

RESUMEN

Hyperinsulinemia is the earliest symptom of insulin resistance (IR), but a causal relationship between the two remains to be established. Here we show that a protein kinase D2 (PRKD2) nonsense mutation (K410X) in two rhesus monkeys with extreme hyperinsulinemia along with IR and metabolic defects by using extreme phenotype sampling and deep sequencing analyses. This mutation reduces PRKD2 at both the mRNA and the protein levels. Taking advantage of a PRKD2-KO mouse model, we demonstrate that PRKD2 deletion triggers hyperinsulinemia which precedes to IR and metabolic disorders in the PRKD2 ablation mice. PRKD2 deficiency promotes ß-cell insulin secretion by increasing the expression and activity of L-type Ca2+ channels and subsequently augmenting high glucose- and membrane depolarization-induced Ca2+ influx. Altogether, these results indicate that down-regulation of PRKD2 is involved in the pathogenesis of hyperinsulinemia which, in turn, results in IR and metabolic disorders.


Asunto(s)
Codón sin Sentido , Proteína Quinasa Activada por ADN/genética , Hiperinsulinismo/genética , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Síndrome Metabólico/genética , Proteínas Nucleares/genética , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Membrana Celular/metabolismo , Proteína Quinasa Activada por ADN/deficiencia , Femenino , Regulación de la Expresión Génica , Glucosa/metabolismo , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Células Secretoras de Insulina/patología , Macaca mulatta , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
20.
Cancer Res ; 78(11): 2876-2885, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29531160

RESUMEN

The receptor-interacting protein kinase 1 (RIPK1) is an essential signaling molecule in pathways for cell survival, apoptosis, and necroptosis. We report here that RIPK1 is upregulated in human colorectal cancer and promotes cell proliferation when overexpressed in a colon cancer cell line. RIPK1 interacts with mitochondrial Ca2+ uniporter (MCU) to promote proliferation by increasing mitochondrial Ca2+ uptake and energy metabolism. The ubiquitination site of RIPK1 (RIPK1-K377) was critical for this interaction with MCU and function in promoting cell proliferation. These findings identify the RIPK1-MCU pathway as a promising target to treat colorectal cancer.Significance: RIPK1-mediated cell proliferation through MCU is a central mechanism underlying colorectal cancer progression and may prove to be an important therapeutic target for colorectal cancer treatment. Cancer Res; 78(11); 2876-85. ©2018 AACR.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/metabolismo , Mitocondrias/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis/fisiología , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Neoplasias Colorrectales/patología , Metabolismo Energético/fisiología , Células HT29 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ubiquitinación/fisiología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...