Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0072524, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007718

RESUMEN

Cryptococcal meningitis (CM), a common and serious opportunistic infection mostly caused by Cryptococcus neoformans, is primarily treated with fluconazole. Nevertheless, Cryptococcus neoformans strains that undergo repeated exposure to azoles can gradually acquire heteroresistance to fluconazole. The management of this specific CM infection poses a substantial challenge. Determining a globally accepted definition for fluconazole heteroresistance and developing effective and prompt methods for identifying heteroresistance is of utmost importance. We collected data on the clinical and epidemiological characteristics of patients diagnosed with CM. All the available Cryptococcus neoformans strains isolated from these patients were collected and subjected to antifungal susceptibility testing and evaluation of fluconazole heteroresistance. AIDS was present in 40.5% of the patients, whereas 24.1% did not have any underlying diseases. Patients with chronic diseases or impaired immune systems are susceptible to infection by Cryptococcus neoformans, a fungus that frequently (39.6%, 19/48) shows heteroresistance to fluconazole, as confirmed by population analysis profile (PAP).IMPORTANCEFluconazole heteroresistance poses a significant threat to the efficacy of fluconazole in treating cryptococcal meningitis (CM). Unfortunately, the standard broth microdilution method often misses the subtle percentages of subpopulations exhibiting heteroresistance. While the population analysis profile (PAP) method is esteemed as the gold standard, its time-consuming and labor-intensive nature makes it impractical for routine clinical use. In contrast, the Kirby-Bauer (KB) disk diffusion method offers a simple and effective screening solution. Our study highlights the value of KB over PAP and minimum inhibitory concentration (MIC) by demonstrating that when adjusting the inoculum concentration to 1.0 McFarland and subjecting samples to a 72-hour incubation period at 35°C, the KB method closely mirrors the outcomes of the PAP approach in detecting fluconazole heteroresistance. This optimization of the KB method not only enhances assay efficiency but also provides a blueprint for developing a timely and effective strategy for identifying heteroresistance.

2.
Sci Rep ; 14(1): 11984, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796631

RESUMEN

In prior investigations, a correlation was established between patient outcomes in locally advanced non-small cell lung cancer (LA-NSCLC) following thoracic irradiation and parameters, such as pre/post-treatment neutrophil-to-lymphocyte ratio (NLR) and NLR change (ΔNLR). However, these parameters could potentially be influenced by radiation-related variables, such as gross tumor volume (GTV). The primary aim of this study was to elucidate the factors impacting post-treatment NLR and ΔNLR and to further assess their prognostic relevance. In this retrospective study, a cohort of 188 LA-NSCLC patients who underwent thoracic radiation between 2012 and 2017 was assessed. The calculation of pre/post-treatment NLR involved the use of absolute neutrophil and lymphocyte counts. ΔNLR was defined as the difference between post- and pre-treatment NLR values. To assess the relationships between various variables and overall survival (OS), local progression-free survival (LPFS), and distant metastasis-free survival (DMFS), the Kaplan-Meier technique and Cox proportional hazards regression were employed. Additionally, Spearman's rank correlation analysis was carried out to investigate correlations between the variables. The analysis revealed that both post-treatment NLR (r = 0.315, P < 0.001) and ΔNLR (r = 0.156, P = 0.032) were associated with GTV. However, OS, LPFS, and DMFS were not independently correlated with pre/post-treatment NLR. ΔNLR, on the other hand, exhibited independent associations with OS and DMFS (HR = 1.054, P = 0.020, and P = 0.046, respectively). Elevated ΔNLR values were linked to poorer OS (P = 0.023) and DMFS (P = 0.018) in the Kaplan-Meier analysis. Furthermore, when stratifying by GTV, a higher ΔNLR remained to be associated with worse OS and DMFS (P = 0.047 and P = 0.035, respectively) in the GTV ≤ 67.41 cm3 group, and in the GTV > 67.41 cm3 group (P = 0.028 and P = 0.042, respectively), highlighting ΔNLR as the sole independent predictive factor for survival and metastasis, irrespective of GTV.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Linfocitos , Neutrófilos , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/sangre , Femenino , Masculino , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/sangre , Linfocitos/patología , Persona de Mediana Edad , Anciano , Pronóstico , Estudios Retrospectivos , Anciano de 80 o más Años , Adulto , Recuento de Linfocitos , Estimación de Kaplan-Meier
3.
Food Funct ; 15(8): 4490-4502, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38566566

RESUMEN

High-fat diet (HFD) has been associated with certain negative bone-related outcomes, such as bone metabolism disruption and bone loss. Sciadonic acid (SC), one of the main nutritional and functional components of Torreya grandis seed oil, is a unique Δ5-unsaturated-polymethylene-interrupted fatty acid (Δ5-UPIFA) that has been claimed to counteract such disorders owing to some of its physiological effects. However, the role of SC in ameliorating bone metabolism disorders due to HFD remains unclear. In the present investigation, we observed that SC modulates the OPG/RANKL/RANK signaling pathway by modifying the lipid metabolic state and decreasing inflammation in mice. In turn, it could balance bone resorption and formation as well as calcium and phosphorus levels, enhance bone strength and bone mineral density (BMD), and improve its microstructure. In addition, SC could inhibit fat vacuoles in bone, reverse the phenomenon of reduced numbers and poor continuity of bone trabeculae, and promote orderly arrangement of collagen fibers and cartilage repair. This study provides some theoretical basis for SC as a dietary intervention agent to enhance bone nutrition.


Asunto(s)
Densidad Ósea , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Masculino , Densidad Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Ligando RANK/metabolismo , Osteoprotegerina/metabolismo , Transducción de Señal/efectos de los fármacos
4.
J Sci Food Agric ; 104(7): 3902-3912, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38264943

RESUMEN

BACKGROUND: Cyclophosphamide (Cy) is a frequently used chemotherapeutic drug, but long-term Cy treatment can cause immunosuppression and intestinal mucosal damage. The intestinal mucosal barrier and gut flora play important roles in regulating host metabolism, maintaining physiological functions and protecting immune homeostasis. Dysbiosis of the intestinal flora affects the development of the intestinal microenvironment, as well as the development of various external systemic diseases and metabolic syndrome. RESULTS: The present study investigated the influence of sciadonic acid (SA) on Cy-induced immunosuppression in mice. The results showed that SA gavage significantly alleviated Cy-induced immune damage by improving the immune system organ index, immune response and oxidative stress. Moreover, SA restored intestinal morphology, improved villus integrity and activated the nuclear factor κB signaling pathway, stimulated cytokine production, and reduced serum lipopolysaccharide (LPS) levels. Furthermore, gut microbiota analysis indicated that SA increased t beneficial bacteria (Alistipes, Lachnospiraceae_NK4A136_group, Rikenella and Odoribacter) and decreased pathogenic bacteria (norank-f-Oscillospiraceae, Ruminococcus and Desulfovibrio) to maintain intestinal homeostasis. CONCLUSION: The present study provided new insights into the SA regulation of intestinal flora to enhance immune responses. © 2024 Society of Chemical Industry.


Asunto(s)
Ácidos Araquidónicos , Microbioma Gastrointestinal , Animales , Ratones , Terapia de Inmunosupresión , Bacteroidetes , Ciclofosfamida/efectos adversos , Inmunidad
5.
Discov Oncol ; 14(1): 219, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038833

RESUMEN

OBJECTIVE: The objective of this study was to investigate the safety and effectiveness of high-dose-rate brachytherapy as a treatment modality for recurrent or residual neck metastatic lymph nodes following external radiotherapy. METHODS: 38 patients with 52 metastatic lymph nodes recurring or residual after previous external radiotherapy was completed to metastatic lymph nodes in the neck were collected from January 2019 to February 2022. High-dose-rate brachytherapy with 192Ir was performed with a prescribed dose of 20-30 Gy/1f (effective biological dose of 60-120 Gy), and imaging was performed at 1, 3, and 6 months after treatment to assess the local control rate and adverse effects of treatment. RESULTS: All 38 patients received completed treatment, and they were followed up for 6 months. 52 patients with neck lymph node metastases had an objective response rate. (Complete response, CR + Partial response, PR) of 76.9%, which comprised 89.5% (34/38) for lymph nodes ≤ 3 cm and 42.9% (4/14) for > 3 cm, P = 0.028. P > 0.05 for CR + PR versus stable disease, SD + progressive disease, PD for lymph nodes between different subdivisions of the neck. Using the Radiation Therapy Oncology Group (RTOG) Acute Toxicity Scoring System, there were 6 cases of acute radioskin injuries of degree I and 4 cases of degree II with a 60% symptomatic relief rate. CONCLUSIONS: High-dose-rate brachytherapy serves as a safe and effective method in treating recurrent residual neck metastatic lymph nodes in the field after external radiotherapy, exerting tolerable adverse effects.

6.
Plant Physiol Biochem ; 196: 1122-1136, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36907700

RESUMEN

Pinus massoniana is an important industrial crop tree species commonly used for timber and wood pulp for papermaking, rosin, and turpentine. This study investigated the effects of exogenous calcium (Ca) on P. massoniana seedling growth, development, and various biological processes and revealed the underlying molecular mechanisms. The results showed that Ca deficiency led to severe inhibition of seedling growth and development, whereas adequate exogenous Ca markedly improved growth and development. Many physiological processes were regulated by exogenous Ca. The underlying mechanisms involved diverse Ca-influenced biological processes and metabolic pathways. Calcium deficiency inhibited or impaired these pathways and processes, whereas sufficient exogenous Ca improved and benefited these cellular events by regulating several related enzymes and proteins. High levels of exogenous Ca facilitated photosynthesis and material metabolism. Adequate exogenous Ca supply relieved oxidative stress that occurred at low Ca levels. Enhanced cell wall formation, consolidation, and cell division also played a role in exogenous Ca-improved P. massoniana seedling growth and development. Calcium ion homeostasis and Ca signal transduction-related gene expression were also activated at high exogenous Ca levels. Our study facilitates the elucidation of the potential regulatory role of Ca in P. massoniana physiology and biology and is of guiding significance in Pinaceae plant forestry.


Asunto(s)
Fenómenos Biológicos , Pinus , Calcio/metabolismo , Pinus/genética , Pinus/metabolismo , Proteómica/métodos , Plantones/metabolismo , Crecimiento y Desarrollo
7.
Food Funct ; 14(6): 2870-2880, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36883533

RESUMEN

Obesity has been reported to be associated with dysbiosis of gut microbiota. Sciadonic acid (SC) is one of the main functional components of Torreya grandis "Merrillii" seed oil. However, the effect of SC on high-fat diet (HFD)-induced obesity has not been elucidated. In this study, we evaluated the effects of SC on lipid metabolism and the gut flora in mice fed with a high-fat diet. The results revealed that SC activates the PPARα/SREBP-1C/FAS signaling pathway and reduces the levels of total cholesterol (TC), triacylglycerols (TG), and low-density lipoprotein cholesterol (LDL-C), but increases the level of high-density lipoprotein cholesterol (HDL-C) and inhibits weight gain. Among them, high-dose SC was the most effective; the TC, TG and LDL-C levels were reduced by 20.03%, 28.40% and 22.07%, respectively; the HDL-C level was increased by 8.55%. In addition, SC significantly increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels by 98.21% and 35.17%, respectively, decreased oxidative stress, and ameliorated the pathological damage to the liver caused by a high-fat diet. Furthermore, SC treatment altered the composition of the intestinal flora, promoting the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while simultaneously decreasing the relative abundance of potentially harmful bacteria such as Faecalibaculum, norank_f_Desulfovibrionaceae, and Romboutsia. Spearman's correlation analysis indicated that the gut microbiota was associated with SCFAs and biochemical indicators. In summary, our results suggested that SC can improve lipid metabolism disorders and regulate the gut microbial structure.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , LDL-Colesterol , Obesidad/etiología , Obesidad/microbiología , Triglicéridos/farmacología , Ratones Endogámicos C57BL , Metabolismo de los Lípidos
8.
Front Plant Sci ; 14: 1046719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818865

RESUMEN

Olive suffers from cold damage when introduced to high-latitude regions from its native warm climes. Therefore, this study aims to improve the adaption of olive to climates in which it is cold for part of the year. The phenotype, physiological performance, nutrient content, and gene expression of olive leaves (from two widely planted cultivars) were examined after cultivation in normal and cold stress conditions. The results showed that the cold-tolerant cultivar possessed stronger photosynthesis efficiency and higher anti-oxidase activity after cold treatment than the cold-sensitive cultivar. Alteration of gene expression and metabolites in the amino acid metabolism, glycerolipid metabolism, diterpenoid biosynthesis, and oleuropein metabolism pathways played an important role in the cold responses of olive. Furthermore, the construction of the network of genes for ubiquitination and metabolites suggested that polyubiquitination contributes most to the stable physiology of olive under cold stress. Altogether, the results of this study can play an important role in helping us to understand the cold hardiness of olive and screen cold-resistant varieties for excellent quality and yield.

9.
Front Oncol ; 13: 1259880, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38313214

RESUMEN

The present study aims to investigate the therapeutic value of third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) combined with cranial radiotherapy (RT) in patients with EGFR-positive non-small cell lung cancer (NSCLC) and brain metastases (BMs). Methodology: This is a retrospective study that involved 213 patients with EGFR-NSCLC and BMs, with the patients divided into two groups: the upfront cranial RT (ucRT) group (n = 96) and the non-ucRT group (n = 117). All patients were administered with osimertinib, and those in the ucRT group also underwent RT. The overall survival (OS), progression-free survival (PFS) and intracranial PFS (IPFS) of the two groups were compared. Results: The ucRT group manifested a markedly higher IPFS than the non-ucRT group (29.65 months vs 21.8 months; P < 0.0001). The subgroup analysis revealed that patients with oligometastases (OLOGO-BMs; 1-3 BMs) demonstrated a notably longer OS (44.5 months vs 37.3 months; P < 0.0001), PFS (32.3 months vs 20.8 months; P = 0.6884) and IPFS (37.8 months vs 22.1 months; P < 0.0001) in the ucRT group than in the non-ucRT group. However, for patients with multiple BMs, there was no significant difference in OS (27.3 months vs 34.4 months; P = 0.0710) and PFS (13.7 months vs 13.2 months; P = 0.0516) between the ucRT group and the non-ucRT group; the ucRT group exhibited a higher IPFS (26.4 months vs 21.35 months; P = 0.0028). Cox's multivariate analysis of patients with OLOGO-BM indicated that the use of ucRT was linked to a better OS (heart rate [HR] = 0.392; 95% confidence interval [CI]: 0.178-0.863; P = 0.020) and PFS (HR = 0.558; 95% CI: 0.316-0.986; P = 0.044). Conclusion: Upfront cerebral cranial stereotactic radiosurgery can improve outcomes in EGFR-positive patients with NSCLC and OLOGO-BM. However, for patients with multiple BMs, the preferable strategy may be pre-treatment with EGFR-TKIs.

10.
Front Plant Sci ; 13: 845107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386672

RESUMEN

As one of the serious environmental problems worldwide, acid rain (AR) has always caused continuous damage to the forestry ecosystem. Studies have shown that AR can leach calcium ions from plants and soil. Calcium (Ca) is also a crucial regulator of the plant stress response, whereas there are few reports on how Ca regulates the response of AR-resistant woody plants to AR stress. In this study, by setting different exogenous Ca levels, we study the physiological and molecular mechanism of Ca in regulating the Taxus wallichiana var. mairei response to AR stress. Our results showed that low Ca level leads to photosynthesis, and antioxidant defense system decreases in T. wallichiana var. mairei leaves; however, these negative effects could be reversed at high Ca level. In addition, proteomic analyses identified 44 differentially expressed proteins in different Ca level treatments of T. wallichiana var. mairei under AR stress. These proteins were classified into seven groups, which include metabolic process, photosynthesis and energy pathway, cell rescue and defense, transcription and translation, protein modification and degradation, signal transduction, etc. Furthermore, the study found that low Ca level leads to an obvious increase of Ca-related gene expression under AR stress in T. wallichiana var. mairei using qRT-PCR analyses and however can be reversed at high Ca level. These findings would enrich and extend the Ca signaling pathways of AR stress in AR-resistant woody plants and are expected to have important theoretical and practical significance in revealing the mechanism of woody plants tolerating AR stress and protecting forestry ecosystem in soil environment under different Ca levels.

11.
Front Nutr ; 9: 1053348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618687

RESUMEN

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia. The aim of this work was to investigate the effect of sciadonic acid (SA) on disorders of glucolipid metabolism and intestinal flora imbalance and to further investigate its potential molecular mechanism of anti-diabetes. The experimental data indicated that SA could alleviate hyperlipidemia, insulin resistance, oxidative stress, the inflammatory response, repair liver function damage, and promote glycogen synthesis caused by T2DM. SA could also activate the PI3K/AKT/GLUT-2 signaling pathway, promote glucose metabolism gene expression, and maintain glucose homeostasis. Furthermore, 16S rRNA analysis revealed that SA could reduce the Firmicutes/Bacteroidota (F/B) ratio; promote norank_f__Muribaculaceae, Allobaculum, Akkermansia, and Eubacterium_siraeum_group proliferation; increase the levels of major short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid; and maintain the homeostasis of the intestinal flora. In conclusion, these results suggested that SA could reshape the structural composition of intestinal microbes, activate the PI3K/AKT/GLUT2 pathway, improve insulin resistance, and decrease blood glucose levels.

12.
Front Cell Dev Biol ; 8: 581919, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123538

RESUMEN

BACKGROUND: The expression of progestin and adipoQ receptor 3 (PAQR3) is generally downregulated in multiple tumors, which is associated with tumor progression and poor prognosis. METHODS: The clinical value of PAQR3 was analyzed using various databases and in 60 patients with non-small cell lung cancer (NSCLC). In addition, cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays were used to evaluate the effect of PAQR3 on the growth of NSCLC cells in vitro. Gene set enrichment analysis (GSEA) was performed to investigate the possible mechanism through which PAQR3 is involved in the progression of lung cancer. Furthermore, western blotting was employed to verify the relevant mechanism. RESULTS: The expression of PAQR3 was decreased in 60 NSCLC patients and was related to the histological subtype, lymph node metastasis, tumor size, and diagnosis of NSCLC. Patients with lung adenocarcinoma with increased PAQR3 expression tended to have a better prognosis. Besides, PAQR3 inhibited proliferation, clone formation, and cycle transition in NSCLC cells, but induced apoptosis. The results of GSEA showed that PAQR3 regulated the progression of lung cancer by affecting cell cycle, DNA replication, and the p53 signaling pathway. We confirmed that PAQR3 overexpression inhibited the expression of NF-κB, while it increased the expression of p53, phospho-p53, and Bax. On the contrary, PAQR3 inhibition played an opposite role in these proteins. CONCLUSION: PAQR3 inhibited the growth of NSCLC cells through the NF-κB/P53/Bax signaling pathway and might be a new target for diagnosis and treatment.

13.
J Glob Antimicrob Resist ; 23: 203-210, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32966911

RESUMEN

OBJECTIVES: A single carbapenem-resistant, hypervirulent Klebsiella pneumoniae strain has attracted major public concern. The aim of the present study was to better understand the antimicrobial resistance and genetic characteristics of Klebsiella pneumoniae strain XJ-K1. METHODS: Klebsiella pneumoniae strain XJ-K1 was isolated from a urine specimen of a 69-year-old male patient in a teaching hospital in Shanghai, China, in January 2018. Antimicrobial susceptibility testing, string test, whole-genome sequencing, bioinformatics analysis and phylogenetic analysis were performed in this study. RESULTS: Klebsiella pneumoniae XJ-K1 was an extensively drug-resistant (XDR) hypervirulent strain that showed high-level resistance to antibacterial agents. Three novel plasmids were discovered in strain XJ-K1, including a 207,409-bp IncHI1B-type rmpA2-bearing pLVPK-like virulence plasmid, a 130,628-bp Col156/IncFIB/IncFII-type aadA2-, sul1-, mph(A)- and dfrA12-bearing MDR plasmid, and a 99,408-bp IncFII/IncR-type blaKPC-2-, blaTEM-1-, blaCTX-M-65-, blaSHV-12-, rmtB- and fosA3-bearing MDR plasmid. Sequence analysis of the chromosome revealed that the aadA2, fosA and sul1 genes were harboured by XJ-K1. Multilocus sequence typing (MSLT) showed that XJ-K1 was ST11. CONCLUSIONS: A large number of resistance genes and a pLVPK-like virulence plasmid carried by Klebsiella pneumoniae strain XJ-K1 might be the main reasons leading to the XDR and hypervirulent phenotype. To the best of our knowledge, this is the first report in China on the co-occurrence of a pLVPK-like virulence plasmid and two MDR plasmids in a single ST11 XDR and hypervirulent Klebsiella pneumoniae isolated from patient urine, which is a serious concern for its further spread.


Asunto(s)
Infecciones por Klebsiella , Preparaciones Farmacéuticas , Infecciones Urinarias , Anciano , China , Humanos , Klebsiella pneumoniae/genética , Masculino , Filogenia , Plásmidos/genética , beta-Lactamasas/genética
14.
Comput Math Methods Med ; 2020: 2852051, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32549905

RESUMEN

Human coagulation factor XIIa (FXIIa) is a trypsin-like serine protease that is involved in pathologic thrombosis. As a potential target for designing safe anticoagulants, FXIIa has received a great deal of interest in recent years. In the present study, we employed virtual high-throughput screening of 500,064 compounds within Enamine database to acquire the most potential inhibitors of FXIIa. Subsequently, 18 compounds with significant binding energy (from -65.195 to -15.726 kcal/mol) were selected, and their ADMET properties were predicted to select representative inhibitors. Three compounds (Z1225120358, Z432246974, and Z146790068) exhibited excellent binding affinity and druggability. MD simulation for FXIIa-ligand complexes was carried out to reveal the stability and inhibition mechanism of these three compounds. Through the inhibition of activated factor XIIa assay, we tested the activity of five compounds Z1225120358, Z432246974, Z45287215, Z30974175, and Z146790068, with pIC50 values of 9.3∗10-7, 3.0∗10-5, 7.8∗10-7, 8.7∗10-7, and 1.3∗10-6 M, respectively; the AMDET properties of Z45287215 and Z30974175 show not well but have better inhibition activity. We also found that compounds Z1225120358, Z45287215, Z30974175, and Z146790068 could be more inhibition of FXIIa than Z432246974. Collectively, compounds Z1225120358, Z45287215, Z30974175, and Z146790068 were anticipated to be promising drug candidates for inhibition of FXIIa.


Asunto(s)
Anticoagulantes/química , Anticoagulantes/farmacología , Factor XIIa/antagonistas & inhibidores , Factor XIIa/química , Sitios de Unión , Biología Computacional , Bases de Datos Farmacéuticas , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Factor XIIa/metabolismo , Ensayos Analíticos de Alto Rendimiento/estadística & datos numéricos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Interfaz Usuario-Computador
15.
Plant J ; 103(4): 1575-1589, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32433816

RESUMEN

Arabidopsis thaliana AKR2A plays an important role in plant responses to cold stress. However, its exact function in plant resistance to cold stress remains unclear. In the present study, we found that the contents of very long-chain fatty acids (VLCFAs) in akr2a mutants were decreased, and the expression level of KCS1 was also reduced. Overexpression of KCS1 in the akr2a mutants could enhance VLCFAs contents and chilling tolerance. Yeast-2-hybrid and bimolecular fluorescence complementation (BIFC) results showed that the transmembrane motif of KCS1 interacts with the PEST motif of AKR2A both in vitro and in vivo. Overexpression of KCS1 in akr2a mutants rescued akr2a mutant phenotypes, including chilling sensitivity and a decrease of VLCFAs contents. Moreover, the transgenic plants co-overexpressing AKR2A and KCS1 exhibited a greater chilling tolerance than the plants overexpressing AKR2A or KCS1 alone, as well as the wild-type. AKR2A knockdown and kcs1 knockout mutants showed the worst performance under chilling conditions. These results indicate that AKR2A is involved in chilling tolerance via an interaction with KCS1 to affect VLCFA biosynthesis in Arabidopsis.


Asunto(s)
Acetiltransferasas/fisiología , Proteínas de Arabidopsis/fisiología , Ácidos Grasos/metabolismo , Chaperonas Moleculares/fisiología , Acetiltransferasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Frío/efectos adversos , Respuesta al Choque por Frío , Ácidos Grasos/fisiología , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Chaperonas Moleculares/genética , Fotosíntesis , Plantas Modificadas Genéticamente , Técnicas del Sistema de Dos Híbridos
16.
Front Genet ; 11: 242, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265985

RESUMEN

BACKGROUND: Upregulation of the six-transmembrane epithelial antigen of prostate-1 (STEAP1) is closely associated with prognosis of numerous malignant cancers. However, its role in lung adenocarcinoma (LUAD), the most common type of lung cancer, remains unknown. This study aimed to investigate the role of STEAP1 in the occurrence and progression of LUAD and the potential mechanisms underlying its regulatory effects. METHODS: STEAP1 mRNA and protein expression were analyzed in 40 LUAD patients via real-time PCR and western blotting, respectively. We accessed the clinical data of 522 LUAD patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to investigate the expression and prognostic role of STEAP1 in LUAD. Further, we performed gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) to elucidate the potential mechanism underlying the role of STEAP1 in LUAD. The protein-protein interaction (PPI) network of STEAP1 was analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes with significant positive and negative associations with STEAP1 were identified and their role in LUAD prognosis was predicted. RESULTS: STEAP1 was significantly upregulated in LUAD patients and associated with LUAD prognosis. Further, TCGA data indicated that STEAP1 upregulation is correlated with the clinical prognosis of LUAD. GO and KEGG analysis revealed that the genes co-expressed with STEAP1 were primarily involved in cell division, DNA replication, cell cycle, apoptosis, cytokine signaling, NF-kB signaling, and TNF signaling. GSEA revealed that homologous recombination, p53 signaling pathway, cell cycle, DNA replication, apoptosis, and toll-like receptor signaling were highly enriched upon STEAP1 upregulation. Gene Expression Profiling Interactive Analysis (GEPIA) analysis revealed that the top 10 hub genes associated with STEAP1 expression were also associated with the LUAD prognosis. CONCLUSION: STEAP1 upregulation potentially influences the occurrence and progression of LUAD and its co-expressed genes via regulation of homologous recombination, p53 signaling, cell cycle, DNA replication, and apoptosis. STEAP1 is a potential prognostic biomarker for LUAD.

17.
Plant Biotechnol J ; 18(2): 526-539, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31350932

RESUMEN

The biosynthesis of very-long-chain fatty acids (VLCFAs) and their transport are required for fibre development. However, whether other regulatory factors are involved in this process is unknown. We report here that overexpression of an Arabidopsis gene ankyrin repeat-containing protein 2A (AKR2A) in cotton promotes fibre elongation. RNA-Seq analysis was employed to elucidate the mechanisms of AKR2A in regulating cotton fibre development. The VLCFA content and the ratio of VLCFAs to short-chain fatty acids increased in AKR2A transgenic lines. In addition, AKR2A promotes fibre elongation by regulating ethylene and synergizing with the accumulation of auxin and hydrogen peroxide. Analysis of RNA-Seq data indicates that AKR2A up-regulates transcript levels of genes involved in VLCFAs' biosynthesis, ethylene biosynthesis, auxin and hydrogen peroxide signalling, cell wall and cytoskeletal organization. Furthermore, AKR2A interacted with KCS1 in Arabidopsis both in vitro and in vivo. Moreover, the VLCFA content and the ratio of VLCFAs to short-chain fatty acids increased significantly in seeds of AKR2A-overexpressing lines and AKR2A/KCS1 co-overexpressing lines, while AKR2A mutants are the opposite trend. Our results uncover a novel cotton fibre growth mechanism by which the critical regulator AKR2A promotes fibre development via activating hormone signalling cascade by mediating VLCFA biosynthesis. This study provides a potential candidate gene for improving fibre yield and quality through genetic engineering.


Asunto(s)
Fibra de Algodón , Ácidos Grasos , Gossypium , Arabidopsis/genética , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/genética , Gossypium/metabolismo , Chaperonas Moleculares/metabolismo , Transducción de Señal/genética
18.
Biosci Biotechnol Biochem ; 83(10): 1815-1821, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31117893

RESUMEN

Human coagulation factor XII, the initiating factor in the intrinsic coagulation pathway, is critical for pathological thrombosis but not for hemostasis. Pharmacologic inhibition of factor XII is an attractive alternative in providing protection from pathologic thrombus formation while minimizing hemorrhagic risk. Large quantity of recombinant active factor XII is required for screening inhibitors and further research. In the present study, we designed and expressed the recombinant serine protease domain of factor XII in Pichia pastoris strain X-33, which is a eukaryotic expression model organism with low cost. The purification protocol was simplified and the protein yield was high (~20 mg/L medium). The purified serine protease domain of factor XII behaved homogeneously as a monomer, exhibited comparable activity with the human ßFXIIa, and accelerated clot formation in human plasma. This study provides the groundwork for factor XII inhibitors screening and further research.


Asunto(s)
Factor XII/metabolismo , Pichia/genética , Serina Proteasas/metabolismo , Amidas/metabolismo , Secuencia de Aminoácidos , Factor XII/genética , Factor XII/aislamiento & purificación , Vectores Genéticos , Hemostasis , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Serina Proteasas/genética , Serina Proteasas/aislamiento & purificación , Trombosis/metabolismo
19.
Sci Rep ; 8(1): 12120, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108371

RESUMEN

Chilling is common in nature and can damage most plant species, particularly young leaves and buds. Mulberry (Morus spp.) is an economically important food source for the domesticated silkworm (Bombyx mori). However, weather and climatic extremes, such as "late spring coldness", seriously damage mulberry buds and young leaves. The molecular mechanism involved in the differing mulberry chilling tolerance is unclear. In the present study, we found that mSOD1, mFADII, and mKCS1 interacted with mAKR2A and that the expression of mAKR2A, mSOD, mFAD, and mKCS1 in the chilling-tolerant mulberry variety was higher than that in the chilling-sensitive variety. Unsaturated fatty acids content and superoxide dismutase (SOD) activity in the chilling-tolerant variety was higher than that in the chilling-sensitive variety. After chilling treatment, mSOD1, mKCS1 and mAKR2A expression in the chilling-tolerant variety was reduced to lower than that in the chilling-sensitive variety, whereas mFADII expression increased in the chilling-tolerant variety compared with that in the chilling-sensitive variety, suggesting that the increased expression of the molecular chaperon mAKR2A helped to maintain or prompted the chilling-related proteins in the chilling-tolerant variety.


Asunto(s)
Aclimatación/fisiología , Ácidos Grasos Insaturados/análisis , Chaperonas Moleculares/metabolismo , Morus/fisiología , Proteínas de Plantas/metabolismo , Superóxido Dismutasa/metabolismo , Frío/efectos adversos , Ácidos Grasos Insaturados/metabolismo , Morus/química
20.
ACS Nano ; 12(5): 4736-4743, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29641177

RESUMEN

The desire for low-power/voltage operation of devices is driving renewed interest in understanding scaling effects in ferroelectric thin films. As the dimensions of ferroelectrics are reduced, the properties can vary dramatically, including the robust scaling relationship between coercive field ( Ec) and thickness ( d), also referred to as the Janovec-Kay-Dunn (JKD) law, wherein Ec ∝ d-2/3. Here, we report that whereas (001)-oriented heterostructures follow JKD scaling across the thicknesses range of 20-330 nm, (111)-oriented heterostructures of the canonical tetragonal ferroelectric PbZr0.2Ti0.8O3 exhibit a deviation from JKD scaling wherein a smaller scaling exponent for the evolution of Ec is observed in films of thickness ≲ 165 nm. X-ray diffraction reveals that whereas (001)-oriented heterostructures remain tetragonal for all thicknesses, (111)-oriented heterostructures exhibit a transition from tetragonal-to-monoclinic symmetry in films of thickness ≲ 165 nm as a result of the compressive strain. First-principles calculations suggest that this symmetry change contributes to the deviation from the expected scaling, as the monoclinic phase has a lower energy barrier for switching. This structural evolution also gives rise to changes in the c/ a lattice parameter ratio, wherein this ratio increases and decreases in (001)- and (111)-oriented heterostructures, respectively, as the films are made thinner. In (111)-oriented heterostructures, this reduced tetragonality drives a reduction of the remanent polarization and, therefore, a reduction of the domain-wall energy and overall energy barrier to switching, which further exacerbates the deviation from the expected scaling. Overall, this work demonstrates a route toward reducing coercive fields in ferroelectric thin films and provides a possible mechanism to understand the deviation from JKD scaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA