Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Nano Lett ; 24(20): 6148-6157, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728265

RESUMEN

Magnetic field mediated magnetic catalysts provide a powerful pathway for accelerating their sluggish kinetics toward the oxygen evolution reaction (OER) but remain great challenges in acidic media. The key obstacle comes from the production of an ordered magnetic domain catalyst in the harsh acidic OER. In this work, we form an induced local magnetic moment in the metallic Ir catalyst via the significant 3d-5d hybridization by introducing cobalt dopants. Interestingly, CoIr nanoclusters (NCs) exhibit an excellent magnetic field enhanced acidic OER activity, with the lowest overpotential of 220 mV at 10 mA cm-2 and s long-term stability of 120 h under a constant magnetic field (vs 260 mV/20 h without a magnetic field). The turnover frequency reaches 7.4 s-1 at 1.5 V (vs RHE), which is 3.0 times higher than that without magnetization. Density functional theory results show that CoIr NCs have a pronounced spin polarization intensity, which is preferable for OER enhancement.

2.
J Ethnopharmacol ; 329: 118149, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580188

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Calcium oxalate crystals play a key role in the development and recurrence of kidney stones (also known as urolithiasis); thus, inhibiting the formation of these crystals is a central focus of urolithiasis prevention and treatment. Previously, we reported the noteworthy in vitro inhibitory effects of Aspidopterys obcordata fructo oligosaccharide (AOFOS), an active polysaccharide of the traditional Dai medicine Aspidopterys obcordata Hemsl. (commonly known as Hei Gai Guan), on the growth of calcium oxalate crystals. AIM OF THE STUDY: To investigated the effectiveness and mechanism of AOFOS in treating kidney stones. MATERIALS AND METHODS: A kidney stones rats model was developed, followed by examining AOFOS transport dynamics and effectiveness in live rats. Additionally, a correlation between the polysaccharide and calcium oxalate crystals was studied by combining crystallization experiments with density functional theory calculations. RESULTS: The results showed that the polysaccharide was transported to the urinary system. Furthermore, their accumulation was inhibited by controlling their crystallization and modulating calcium ion and oxalate properties in the urine. Consequently, this approach helped effectively prevent kidney stone formation in the rats. CONCLUSIONS: The present study emphasized the role of the polysaccharide AOFOS in modulating crystal properties and controlling crystal growth, providing valuable insights into their potential therapeutic use in managing kidney stone formation.


Asunto(s)
Oxalato de Calcio , Cristalización , Cálculos Renales , Animales , Oxalato de Calcio/química , Oxalato de Calcio/metabolismo , Masculino , Ratas , Cálculos Renales/prevención & control , Cálculos Renales/tratamiento farmacológico , Ratas Sprague-Dawley , Oligosacáridos/farmacología , Oligosacáridos/química , Urolitiasis/tratamiento farmacológico , Urolitiasis/prevención & control , Modelos Animales de Enfermedad , Inulina/química , Inulina/farmacología
3.
J Colloid Interface Sci ; 668: 59-67, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38669996

RESUMEN

Photocatalysis is a green and environmentally friendly method for degrading dangerous and nonbiodegradable pollutants. In this study, a sequence of metal-free triazine-based electronic donor-acceptor (D-A) conjugated polymers Tr-X (X = Th, BT, BTh) were prepared by D-A configuration regulation between triazine (Tr) and monomers containing N and S, such as thiophene (Th), bithiophene (BTh) and benzothiadiazole (BT) units, for the photocatalytic degradation of bisphenol A (BPA) and benzene contaminants in water under visible light. Among these, Tr-BTh exhibited complete photocatalytic degradation owing to its excellent D-A configuration. Moreover, the N and S atoms, which are rich in triazine and thiophene units, serve as highly dispersed reactive sites. The separation and transfer of photogenerated carriers can be further improved by expanding the light-absorption range of polymers. In addition, the polymers showed good adsorption for BPA and other aromatic organic pollutants through π-π interaction and surface hydrogen bonding, which provides a facile strategy for efficient polymer-based photocatalysts for water purification.

4.
J Colloid Interface Sci ; 668: 437-447, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688182

RESUMEN

Antibiotics are refractory degradable organic pollutants that present a significant hazard to water environments. In this work, a ternary composite (KB/BMO-GO) comprising of graphene oxide (GO), Bi2MoO6 (BMO), and a cross-linked benzene polymer (KB) was synthesized and applied to promote the synergistic adsorption-photocatalytic degradation of the refractory pollutant, oxytetracycline (OTC). The inclusion of GO and KB in the composite enhanced the OTC adsorption performance of the catalysts, and the construction of Z-scheme heterojunction promoted the photogenerated charge separation efficiency and broadened the range of light absorption, thereby enhancing the photocatalytic performance. Moreover, we compared the performance of catalysts loaded with different mass ratios of KB (x% KB/BMO-GO). Among them, the 15 % KB/BMO-GO catalyst sample had the best OTC degradation performance. Specifically, 15 % KB/BMO-GO could adsorb 69.7 % of OTC in 30 min, reaching an OTC degradation rate of 93.3 % under visible light irradiation. h+ and 1O2 are the main active substances in the photocatalytic process. In addition, the catalysts are acid-alkali and salt-resistant, as well as good reusability. This study provides a valuable reference for the preparation of highly efficient photocatalysts for synergistic adsorption-photodegradation processes.

5.
Angew Chem Int Ed Engl ; 63(18): e202319029, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38449084

RESUMEN

Electrochemical reduction of nitrate to ammonia (NO3RR) is a promising and eco-friendly strategy for ammonia production. However, the sluggish kinetics of the eight-electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a library of Pd-based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure-activity relationship towards NO3RR. The ultra-thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants break the electronic balance and upshift its d-band center, thus optimizing intermediates adsorption. The anisotropic electronic characteristics of these transition metals make the NO3RR activity in the order of PdCu>PdCo≈PdFe>PdNi>Pd, and a record-high NH3 yield rate of 295 mg h-1 mgcat -1 along with Faradaic efficiency of 90.9 % is achieved in neutral electrolyte on PdCu bimetallene. Detailed studies further reveal that the moderate N-species (*NO3 and *NO2) adsorption ability, enhanced *NO activation, and reduced HER activity facilitate the NH3 production. We believe our results will give a systematic guidance to the future design of NO3RR catalysts.

6.
Int J Nanomedicine ; 19: 2409-2428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476281

RESUMEN

Background and Purpose: Nitidine chloride (NC) is a botanical drug renowned for its potent anti-inflammatory, antimalarial, and hepatocellular carcinoma-inhibiting properties; however, its limited solubility poses challenges to its development and application. To address this issue, we have devised a colon-targeted delivery system (NC-CS/PT-NPs) aimed at modulating the dysbiosis of the gut microbiota by augmenting the interaction between NC and the intestinal microbiota, thereby exerting an effect against nonalcoholic fatty liver disease. Methods: The NC-CS/PT-NPs were synthesized using the ion gel method. Subsequently, the particle size distribution, morphology, drug loading efficiency, and release behavior of the NC-CS/PT-NPs were characterized. Furthermore, the impact of NC-CS/PT-NPs on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice was investigated through serum biochemical analysis, ELISA, and histochemical staining. Additionally, the influence of NC-CS/PT-NPs on intestinal microbiota was analyzed using 16S rDNA gene sequencing. Results: The nanoparticles prepared in this study have an average particle size of (255.9±5.10) nm, with an encapsulation rate of (72.83±2.13) % and a drug loading of (4.65±0.44) %. In vitro release experiments demonstrated that the cumulative release rate in the stomach and small intestine was lower than 22.0%, while it reached 66.75% in the colon. In vivo experiments conducted on HFD-induced NAFLD mice showed that treatment with NC-CS/PT-NPs inhibited weight gain, decreased serum aspartate aminotransferase (AST), Alanine aminotransferase (ALT) and lipid levels, improved liver and intestinal inflammation, and altered the diversity of gut microbiota in mice. Conclusion: This study provides new evidence for the treatment of NAFLD through the regulation of gut microbiota using active ingredients from traditional Chinese medicine.


Asunto(s)
Benzofenantridinas , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Hígado , Intestino Delgado , Dieta Alta en Grasa , Ratones Endogámicos C57BL
7.
Adv Mater ; 36(7): e2308839, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37906727

RESUMEN

Highly selective semihydrogenation of alkynes to alkenes is a highly important reaction for catalytic industry. Developing non-noble metal based catalysts with platinum group metal-like activity and selectivity is extremely crucial yet challenging. Metastable phase catalysts provide a potential candidate to realize high activity, yet the control of selectivity remains an open question. Here, this work first reports a metastable phase core-shell: face-centered cubic (fcc) phase Ag (10 at%) core-metastable hexagonal closest packed (hcp) phase Ni (90 at%) shell catalyst, which represents high conversion rate, high selectivity, and remarkable universality for the semihydrogenation of phenylacetylene and its derivatives. More impressively, a turnover frequency (TOF) value of 8241.8 h-1 is achieved, much higher than those of stable phase catalysts and reported platinum group metal based catalysts. Mechanistic investigation reveals that the surface of hcp Ni becomes more oxidized due to electron transfer from hcp Ni shell to fcc Ag core, which decreases the adsorption capacity of styrene on the metastable phase Ni surface, thus preventing full hydrogenation. This work has gained crucial research significance for the design of high performance metastable phase catalysts.

8.
Angew Chem Int Ed Engl ; 63(2): e202311413, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38009687

RESUMEN

With its efficient nitrogen fixation kinetics, electrochemical lithium-mediated nitrogen reduction reaction (LMNRR) holds promise for replacing Haber-Bosch process and realizing sustainable and green ammonia production. However, the general interface problem in lithium electrochemistry seriously impedes the further enhancement of LMNRR performance. Inspired by the development history of lithium battery electrolytes, here, we extend the ring-chain solvents coupling law to LMNRR system to rationally optimize the interface during the reaction process, achieving nearly a two-fold Faradaic efficiency up to 54.78±1.60 %. Systematic theoretical simulations and experimental analysis jointly decipher that the anion-rich Li+ solvation structure derived from ring tetrahydrofuran coupling with chain ether successfully suppresses the excessive passivation of electrolyte decomposition at the reaction interface, thus promoting the mass transfer of active species and enhancing the nitrogen fixation kinetics. This work offers a progressive insight into the electrolyte design of LMNRR system.

9.
Adv Mater ; 36(3): e2306758, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37865887

RESUMEN

Ring-opening of phenol in wastewater is the pivotal step in photocatalytic degradation. The highly selective generation of catalytical active species (•OH) to facilitate this process presents a significant scientific challenge. Therefore, a novel approach for designing photocatalysts with single-atom containment in metal-covalent organic frameworks (M-COFs) is proposed. The selection of imine-linked COFs containing abundant N and O-chelate sites provides a solid foundation for anchoring metal atom. These dispersed metal atom possess rapid accumulation and transfer capabilities for photogenerated electrons, while the periodic π-conjugated structure in 2D-COFs establishes an effective platform. Additionally, the Lewis acid properties of imine bonds in COFs can enhance the adsorption capacity toward gases with Lewis base properties, such as O2 and N2 . It is demonstrated that the Pd2+ @Tp-TAPT, designed based on this concept, exhibits efficient oxygen adsorption and follows the reaction pathway of O2 →•O2 - →H2 O2 →•OH with high selectivity, thereby achieving completely degradation of refractory phenol through photocatalysis within 10 min. It is anticipated that the selective generation of catalytic active species via advanced material design concepts will serve as a significant reference for achieving precise material catalysis in the future.

10.
Molecules ; 28(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138466

RESUMEN

The polysaccharides extracted from Aspidopterys obcordata are thought to have anti-urolithiasis activity in Drosophila kidney stones. This study aimed to assess the effects of different extraction solvents on the yield, chemical composition, and bioactivity of polysaccharides from A. obcordata. A. obcordata polysaccharides were extracted by using four solutions: hot water, HCl solution, NaOH solution, and 0.1 M NaCl. The results revealed that the extraction solvents significantly influenced the extraction yields, molecular weight distribution, monosaccharide compositions, preliminary structural characteristics, and microstructures of polysaccharides. The NaOH solution's extraction yield was significantly higher than the other extraction methods. Vitro antioxidant activity assays revealed that the NaOH solution extracted exhibited superior scavenging abilities towards DPPH and ABTS radicals and higher FRAP values than other polysaccharides. The vitro assays conducted for calcium oxalate crystallization demonstrated that four polysaccharides exhibited inhibitory effects on the nucleation and aggregation of calcium oxalate crystals, impeded calcium oxalate monohydrate growth, and induced calcium oxalate dihydrate formation. The NaOH solution extracted exhibited the most pronounced inhibition of calcium oxalate crystal nucleation, while the hot water extracted demonstrated the most significant suppression of calcium oxalate crystal aggregation. Therefore, it can be inferred that polysaccharides extracted with NaOH solution exhibited significant potential as a viable approach for extracting polysaccharides from stems due to their superior yield and the remarkable bioactivity of the resulting products.


Asunto(s)
Oxalato de Calcio , Polisacáridos , Oxalato de Calcio/química , Solventes , Hidróxido de Sodio , Polisacáridos/farmacología , Polisacáridos/química , Agua
11.
ACS Appl Mater Interfaces ; 15(47): 55129-55138, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37974408

RESUMEN

Herein, self-assembled monolayers (SAMs) are constructed on the surface of Ti3C2 MXene to improve its environmental stability and piezocatalytic activity. Ti3C2/SAMs-X (X = H, Cl, and NH2) was prepared to enhance the piezocatalytic degradation of bisphenol A (BPA) and hydrogen production. Surface-treated Ti3C2 exhibits different lattice parameters and symmetry, thus leading to an increased polarization. The presence of polar functional groups in SAMs remarkably increases the surface potential of Ti3C2, thereby promoting the migration of piezoelectric electrons. Ti3C2/SAMs-NH2 exhibits the highest piezocatalytic performance, thus improving BPA removal and H2 generation by 7 and 1.8 times, respectively. In addition, Ti3C2/SAMs-NH2 remained stable under 100% relative humidity for 15 days. Therefore, it provides a facile strategy for modulating piezocatalytic properties through interfacial self-assembly-induced lattice distortion.

12.
Artículo en Inglés | MEDLINE | ID: mdl-37883154

RESUMEN

Hydrogen has been hailed as the core of the world's future energy architecture. It is imperative to develop catalysts with an efficient and sustained hydrogen evolution reaction (HER) to scale up alkaline/seawater electrolysis, yet significant difficulties and challenges, such as the high usage of precious metals, still remain. In this paper, a metastable-phase hexagonal close-packed (hcp) Ni-based catalyst with ultralow Pt content (3.1 at %) was designed, which has excellent catalytic performance in the alkaline/seawater HER. The optimal catalyst offers low overpotentials of 21 and 137 mV at 10 mA cm-2 and remains stable during operation for 100 and 300 h at this current density in 1.0 M KOH and real seawater, respectively. A mechanistic study shows that the metastable-phase Ni acts as an anchor site for OH-, which promotes the dissociation of water and greatly improves the formation rate of H2.

13.
ACS Appl Mater Interfaces ; 15(37): 43976-43984, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695310

RESUMEN

Producing sulfur from a sulfide oxidation reaction (SOR)-based technique using sulfide aqueous solution has attracted considerable attention due to its ecofriendliness. This study demonstrates that NiS-doped cobalt sulfide NiS-CoS-supported NiCo alloy foam can deliver the SOR with superior electrocatalytic activity and robust stability compared to reported non-noble metal-based catalysts. Only 0.34 V vs RHE is required to drive a current density of 100 mA cm-2 for the SOR. According to the experiment, the catalyst exhibits a unique sulfurophobicity feature because of the weak interaction between sulfur and the transition metal sulfide (low affinity for elemental sulfur), preventing electrode corrosion during the SOR process. More impressively, the chain-growth mechanism of the SOR from short- to long-chain polysulfides was revealed by combining electrochemical and spectroscopic in situ methods, such as in situ ultraviolet-visible and Raman. It is also demonstrated that electrons can transfer straight from the sulfion (S2-) to the active site on the anode surface during the low-energy-consumption SOR process. This work provides new insight into simultaneous energy-saving hydrogen production and high-value-added S recovery from sulfide-containing wastewater.

14.
Angew Chem Int Ed Engl ; 62(36): e202308262, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37442810

RESUMEN

Electrocatalytic nitrogen reduction reaction offers a sustainable alternative to the conventional Haber-Bosch process. However, it is currently restricted by low effective overpotential due to the concentration polarization, which arises from accumulated products, ammonium, at the reaction interface. Here, a novel covalent organic polymer with ordered periodic cationic sites is proposed to tackle this challenge. The whole network exhibits strong positive charge and effectively repels the positively charged ammonium, enabling an ultra-low interfacial product concentration, and successfully driving the reaction equilibrium to the forward direction. With the given potential unchanged, the suppressed overpotential can be much liberated, ultimately leading to a continuous high-level reaction rate. As expected, when this tailored microenvironment is coupled with a transition metal-based catalyst, a 24-fold improvement is generated in the Faradaic efficiency (73.74 %) as compared with the bare one. The proposed strategy underscores the importance of optimizing dynamic processes as a means of improving overall performance in electrochemical syntheses.

15.
Angew Chem Int Ed Engl ; 62(33): e202306964, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37287329

RESUMEN

Converting CO2 into high-value C2 chemicals such as acetate with high selectivity and efficiency is a critical issue in renewable energy storage. Herein, for the first time we present a vibration-driven piezocatalysis with tin(II) monosulfide (SnS) nanobelts for conversion of CO2 to acetate with 100 % selectivity, and the highest production rate (2.21 mM h-1 ) compared with reported catalysts. Mechanism analysis reveal that the polarized charges triggered by periodic mechanical vibration promote the adsorption and activation of CO2 . The electron transfer can be facilitated due to built-in electric field, decreased band gap and work function of SnS under stress. Remarkably, reduced distance between active sites leads to charge enrichment on Sn sites, promoting the C-C coupling, reducing the energy barriers of the rate determining step. It puts forward a bran-new strategy for converting CO2 into high-value C2 products with efficient, low-cost and environment-friendly piezocatalysis utilizing mechanical energy.

16.
Chem Commun (Camb) ; 59(54): 8396-8399, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37318198

RESUMEN

A series of room temperature phosphorescent doping systems were constructed. Benzothiazole groups containing heteroatoms (S, N) and heavy atoms (Br) were applied as the host. Their charge-transfered luminescence mechanism was revealed by molecular dynamics simulations and molecular cluster calculations. Additionally, BCN/BT's excellent anti-counterfeiting performance demonstrated their application potential.

17.
J Colloid Interface Sci ; 648: 664-673, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321085

RESUMEN

The production of hydrogen peroxide (H2O2) from oxygen and water is an attractive route for converting solar energy into chemical energy. In order to achieve high solar-to-H2O2 conversion efficiency, floral inorganic/organic (CdS/TpBpy) composite with strong oxygen absorption and S-scheme heterojunction was synthesized by simple solvothermal-hydrothermal methods. The unique flower-like structure increased the active sites and oxygen absorption. The existence of S-scheme heterojuntion facilitated the charge transfer across the built-in electric field. Without sacrificial reagents or stabilizers, the optimal CdS/TpBpy had a higher H2O2 production (3600 µmol g-1 h-1), which was 2.4 and 25.6 times than those of TpBpy and CdS, respectively. Meanwhile, CdS/TpBpy inhibited the H2O2 decomposition, thus increasing the overall output. Furthermore, a series of experiments and calculations were carried out to verify the photocatalytic mechanism. This work demonstrates a modification method to improve the photocatalytic activity of hybrid composites, and shows potential applications in energy conversion.

18.
Sci China Technol Sci ; 66(5): 1461-1470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153371

RESUMEN

Although many superwetting materials have been designed for the treatment of oil-containing wastewater, separation strategies for oil-in-water systems containing bacteria have rarely been reported. Herein, poly(vinylidene difluoride)- and poly(lactic acid)-blended fibrous membranes loaded with silver and copper oxide nanoparticles were successfully prepared by a two-step method of electrostatic spinning and liquid-phase synthesis. The product membrane showed excellent super-oleophilic properties in air and hydrophobicity under oil. It could separate water-in-oil emulsion systems containing surfactants with an efficiency above 90%. More importantly, the nanoparticle-loaded fibers were characterized by material degradability and slowly released ions. The fibers exhibited excellent antibacterial activities against both gram-positive and -negative bacteria. This work provides a feasible strategy for water-in-oil emulsion separation and bacterial treatment of wastewater.

19.
Chem Biodivers ; 20(6): e202300373, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37162003

RESUMEN

Chemical investigation of medicinal plant Glycosmis lucida Wall. ex C. C. Huang leaves led to the production of ten compounds (1-10), including two previously unreported geranylated sulfur-containing amides (1 and 2) and eight known ones (3-10). Structural characterization was carried out using comprehensive spectroscopic methods including NMR, MS and CD. The inhibitory effects of all isolates on Th17 differentiation were evaluated, of which compounds 1 and 6 significantly inhibited Th17 differentiation with IC50 values of 0.36 and 1.30 µM, respectively, while both 1 and 6 failed to bind to retinoic acid-related orphan receptor gamma t (RORγt), suggesting that their inhibition of Th17 differentiation is independent of RORγt.


Asunto(s)
Amidas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Amidas/farmacología , Amidas/química , Azufre , Diferenciación Celular
20.
Nat Commun ; 14(1): 2133, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37069153

RESUMEN

Two-dimensional covalent organic frameworks (2D COFs) are promising for gas sensing owing to the large surface area, abundant active sites, and their semiconducting nature. However, 2D COFs are usually produced in the form of insoluble micro-crystallites. Their poor contacts between grain boundaries severely suppress the conductivity, which are too low for chemresistive gas sensing. Here, we demonstrate that halide perovskites can be employed as electric glues to bond 2D COF crystallites to improve their conductivity by two orders of magnitude, activating them to detect NO2 with high selectivity and sensitivity. Resonant microcantilever, grand canonical Monte Carlo, density functional theory and sum-frequency generation analyses prove that 2D COFs can enrich and transfer electrons to NO2 molecules, leading to increased device conductivity. This work provides a facile approach for improving the conductivity of polycrystalline 2D COF films and may expand their applications in semiconductor devices, such as sensors, resistors, memristors and field-emission transistors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...