Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 144: 185-198, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38802230

RESUMEN

There is a large surface-groundwater exchange downstream of wastewater treatment plants (WWTPs), and antibiotics upstream may influence sites downstream of rivers. Thus, samples from 9 effluent-receiving urban rivers (ERURs) and 12 groundwater sites were collected in Shijiazhuang City in December 2020 and April 2021. For ERURs, 8 out of 13 target quinolone antibiotics (QNs) were detected, and the total concentration of QNs in December and April were 100.6-4,398 ng/L and 8.02-2,476 ng/L, respectively. For groundwater, all target QNs were detected, and the total QNs concentration was 1.09-23.03 ng/L for December and 4.54-170.3 ng/L for April. The distribution of QNs was dissimilar between ERURs and groundwater. Most QN concentrations were weakly correlated with land use types in the system. The results of a positive matrix factorization model (PMF) indicated four potential sources of QNs in both ERURs and groundwater, and WWTP effluents were the main source of QNs. From December to April, the contribution of WWTP effluents and agricultural emissions increased, while livestock activities decreased. Singular value decomposition (SVD) results showed that the spatial variation of most QNs was mainly contributed by sites downstream (7.09%-88.86%) of ERURs. Then, a new method that combined the results of SVD and PMF was developed for a specific-source-site risk quotient (SRQ), and the SRQ for QNs was at high level, especially for the sites downstream of WWTPs. Regarding temporal variation, the SRQ for WWTP effluents, aquaculture, and agricultural emissions increased. Therefore, in order to control the antibiotic pollution, more attention should be paid to WWTP effluents, aquaculture, and agricultural emission sources for the benefit of sites downstream of WWTPs.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Agua Subterránea , Quinolonas , Ríos , Aguas Residuales , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , China , Ríos/química , Quinolonas/análisis , Antibacterianos/análisis , Aguas Residuales/química , Ciudades , Eliminación de Residuos Líquidos/métodos
2.
Entropy (Basel) ; 26(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38667845

RESUMEN

We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of Z corresponding to a zero effective cosmological constant indicates that the Bekenstein-Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity.

3.
Bioresour Technol ; 396: 130442, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354961

RESUMEN

This work investigated the effect of oscillation-assisted hydrothermal process on extraction of caffeic acid and ferulic acid from sorghum straws. The results showed that the oscillation-assisted hydrothermal process efficiently improved extraction of caffeic acid and ferulic acid. The oscillation-assisted hydrothermal process resulted in the extraction rates of 1275.48 and 1822.64 mg/L.h for caffeic acid and ferulic acid, respectively. Moreover, the oscillation-assisted hydrothermal process exerted destructive effects on hemicellulose, lignin and the amorphous regions of cellulose, contributing to the release of caffeic acid and ferulic acid in pretreated sorghum straws. The scavenging activities for hydroxyl, 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid radicals of the caffeic acid and ferulic acid extracts obtained by the oscillation-assisted hydrothermal process were determined to be 83.69 %, 84.17 % and 88.45 %, respectively.


Asunto(s)
Sorghum , Ácidos Cafeicos , Ácidos Cumáricos
4.
Plants (Basel) ; 12(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653852

RESUMEN

The Camellia oil tree (Camellia oleifera Abel.) is an important nonwood forest species in China, and the majority of its cultivars are late-acting self-incompatibility (LSI) types. Although several studies have examined the mechanism of LSI, the process is quite complicated and unclear. In this study, pollen tube growth and fruit setting of two Camellia oil tree cultivars Huashuo (HS) and Huajin (HJ) were investigated after non and self-pollination, and transcriptomic analysis of the ovaries was performed 48 h after self-pollination to identify the potential genes implicated in the LSI of Camellia oil trees. The results showed that the fruit set of HS was significantly higher than that of HJ after self-pollination. Transcriptomic analysis revealed that plant hormone signal transduction, the phosphatidylinositol signaling system, ATP-binding cassette (ABC) transporters, reactive oxygen species (ROS) metabolism, and Ca2+ signaling were mainly contributed in the LSI of reaction of Camellia oil tree. Moreover, nine RNase T2 genes were identified from the transcriptome analysis, which also showed that CoRNase7 participated in the self-incompatibility reaction in HS. Based on phylogenetic analysis, CoRNase6 was closely related to S-RNase from coffee, and CoRNase7 and CoRNase8 were closely related to S-RNase from Camellia sinensis. The 9 RNase T2 genes successfully produced proteins in prokaryotes. Subcellular localization indicated that CoRNase1 and CoRNase5 were cytoplasmic proteins, while CoRNase7 was a plasma membrane protein. These results screened the main metabolic pathways closely related to LSI in Camellia oil tree, and SI signal transduction might be regulated by a large molecular regulatory network. The discovery of T2 RNases provided evidence that Camellia oil tree might be under RNase-based gametophytic self-incompatibility.

5.
Huan Jing Ke Xue ; 44(9): 4884-4895, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699807

RESUMEN

Increasing attention has been paid to the heavy metal pollution in groundwater. The source analysis and risk assessment of heavy metals will provide data and method support for the targeted control of heavy metal pollution in groundwater. In this study, 20 sampling sites were selected in Shijiazhuang City. The APCS-MLR model and health risk model were applied to analyze and evaluate the pollution sources and health risks of 10 types of heavy metals in the groundwater of Shijiazhuang. The results showed that ① the mean concentration of heavy metals in groundwater followed the order of Fe>Zn>Mn>Cu>Al>Pb>Cr>As>Cd>Hg, and the mean ρ(Fe) and ρ(Pb) were 260.3 µg·L-1 and 10.01 µg·L-1, respectively. According to the results of the single factor and Nemerow index, Pb, Fe, and Cd primarily contributed to the heavy metal pollution in the groundwater. ② The concentration of heavy metals ranged from 47.30 to 2560 µg·L-1. In terms of spatial distribution, the highest concentration appeared at S3 (2560 µg·L-1), whereas the lowest concentration was at S9 (47.30 µg·L-1). ③ Source analysis results showed that industrial and agricultural activities, transportation emission, and geological background were the major heavy metal sources, among which the contribution of industrial and agricultural activities was the highest (47.83%). ④ The industrial-agricultural activities posed a potential threat to adults (HI>1); however, the non-cancer and the cancer risks of other sources for both adults and children were at an acceptable level (HI<1) and potential threat level, respectively; industrial-agricultural activities were the major source of non-cancer (adults:52.46%, children:52.45%) and cancer risks (adults:65.22%, children:65.69%), among which Cd and As showed high cancer risk. Therefore, to ensure the safety of the groundwater environment, strictly controlling the pollution sources and further strengthening the risk control of heavy metal pollution in groundwater are necessary.


Asunto(s)
Agua Subterránea , Metales Pesados , Adulto , Niño , Humanos , Cadmio , Plomo , Medición de Riesgo , China
6.
Huan Jing Ke Xue ; 44(9): 4927-4940, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699811

RESUMEN

The current situation of antibiotic pollution in lakes is critical. At present, most of the previous studies on antibiotics in lakes have focused on the spatiotemporal distribution and risk assessment, while less attention has been paid to the source apportionment. Ultra-high performance liquid chromatography-mass spectrometry was used to determine the concentration of tetracyclines (TCs), sulfonamides (SAs), and quinolones (QNs) in the samples. The source apportionment and source-specific risk of typical antibiotics in the study area were analyzed using the combination of a PMF model and risk quotients (RQ). The results showed that ① the total concentrations of target antibiotics (Σ antibiotics) ranged from ND to 2635 ng·L-1 for surface water and from ND to 259.8 ng·g-1 for sediments. ② The spatial distribution of QNs in surface water decreased from west to east, SAs decreased from middle to north and south, and TCs increased from middle to north and south. In the sediment, QNs decreased from middle to east and west, whereas SAs and TCs increased from east to west. ③ Aquaculture was the major antibiotic source, accounting for the highest proportion (33.2%), followed by sewage treatment plants (29.2%), livestock activities (18.9%), and domestic sewage (18.7%). ④ The ecological risk assessment results showed that enrofloxacin and flumequine were at a medium-high risk level. ⑤ For the spatial distribution of source-specific risk, the results showed that the aquaculture at S1 was at a high risk level, whereas the source-specific risks for other sites were at a medium-low risk level. In terms of source types, aquaculture was at a medium-high risk level, whereas the other sources were at a medium-low risk level. Therefore, considering the major sources and source-specific risk level of antibiotics, more precise and scientific antibiotic risk control should be adopted in Baiyangdian Lake.


Asunto(s)
Antibacterianos , Lagos , Aguas del Alcantarillado , Sulfanilamida , Enrofloxacina , Sulfonamidas
7.
Huan Jing Ke Xue ; 44(9): 5164-5175, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699834

RESUMEN

The structure and function of microbial communities are affected by several environmental factors. To clarify the spatial-temporal changes and main influencing factors of soil microbial communities in a typical pharmaceutical city, it is urgent to study the spatial-temporal changes in microbial communities in soils for typical cities. Shijiazhuang City was selected as the study area, and 12 sampling sites were selected. The topsoil was collected in June (summer) and September (autumn) of 2021. The 16S rRNA high-throughput sequencing technology was used to study the structure and function of microbial communities in the soil and explore their spatial-temporal changes. Concurrently, Pearson correlation analysis was applied to establish the correlation between the microbial community and environmental factors, and identify the main driving factors of temporal and spatial changes in the microbial community. The results showed that:① Actinobaciota and Proteobateria were the main dominant bacteria in the surface soil of Shijiazhuang City; at the phylum level, the relative abundance of Actinobacteria and Proteobateria decreased from summer to autumn; at the genus level, the dominant genera were Arthrobacter and unknown genera in summer and Arthrobacter and Candidatus_Nitrocosmicus in autumn, which showed significant seasonal differences (P<0.05). ② For seasonal variation, the mean values of the Simpson, Ace, and Chao indices increased, whereas the mean values of OTU decreased; for spatial variation, the Shannon and Simpson indices showed significant spatial difference (P<0.01 and P<0.05). ③ There were no significant spatial-temporal differences in various functional genes; thereinto, the relative abundances of energy production and transformation functional genes were the highest (24.06%-24.84% in summer and 24.63%-25.98% in autumn, respectively). ④ The compositions of microbial community, diversity index, and functional genes were significantly correlated with quinolone antibiotics (QNs), total phosphorus (TP), and nitrate nitrogen (NO3--N), most significantly correlated with QNs (|r|>0.900), which indicated that antibiotics were the main driving factor of soil microbial communities. Therefore, to ensure the stability of microbial community structure and function in urban soil, the comprehensive management and control of antibiotic pollution in soil should be further strengthened.


Asunto(s)
Antibacterianos , Microbiota , Ciudades , ARN Ribosómico 16S/genética , China
8.
Phytochemistry ; 214: 113827, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37595774

RESUMEN

In vitro cytotoxicity-guided isolation based on a MTT assay was conducted for Penthorum chinense Pursh. (Penthoraceae). In the active components (EtOAc extract of P. chinense), eight undescribed neolignans, penthoneolignans A-H (1-8), and two known analogs (9 and 10) were obtained and identified. Their absolute configurations were determined by experimental and computational comparison of electronic circular dichroism spectra analysis. The MTT experiment results of the obtained neolignans on HT29 and LoVo cells indicated previously undescribed neolignans, penthoneolignans A (1) and F (6), showed better cytotoxicity than the positive drug 5-fluorouracil. Then, functional technologies such as the 5-ethyny1-2'-deoxyridine, wound healing, Transwell, and Western blot assays indicated that they could significantly inhibit the proliferation of HT29 and Lovo cells, promote apoptosis by up-regulating Bax, and down-regulating B-cell CLL/lymphoma 2 and poly ADP-ribose polymerase. Furthermore, a Western blot assay combining the Dsh homolog 2 agonist IWP-L6 and the ß-catenin agonist MG132 suggested their mechanism of action was closely related to the inhibition of the Wnt/ß-catenin signaling pathway. In conclusion, previously undescribed neolignans, penthoneolignans A (1) and F (6), may intervene in the development and progression of colorectal cancer by inhibiting the Wnt/ß-catenin signaling pathway and have the potential to be drug candidates.


Asunto(s)
Neoplasias Colorrectales , Lignanos , Humanos , Vía de Señalización Wnt , Apoptosis , Dicroismo Circular , Lignanos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico
9.
Huan Jing Ke Xue ; 44(4): 2223-2233, 2023 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-37040971

RESUMEN

Due to their importance in human medicine, quinolones (QNs), as a typical class of antibiotics, are considered to be the "highest priority critically important antimicrobials" by the World Health Organization (WHO). In order to clarify the spatial-temporal variation and risk of QNs in soil, 18 representative topsoil samples were respectively collected in September 2020 (autumn) and June 2021 (summer). The contents of QNs antibiotics in soil samples were determined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and the ecological risk and resistance risk were calculated using the risk quotient method (RQ). The results showed that:① the average content of QNs decreased from autumn to summer (the average contents of QNs were 94.88 µg·kg-1in autumn and 44.46 µg·kg-1 in summer); the highest values appeared in the middle area. ② The average proportion of silt was without change, whereas the average proportion of clay and sand was increased and decreased, respectively; the average contents of total phosphorus (TP), ammonia nitrogen (NH4+-N), and nitrate nitrogen (NO3--N) also decreased. ③ The content of QNs was significantly correlated with soil particle size, nitrite nitrogen (NO2--N), and nitrate nitrogen (NO3--N) (P<0.05). ④ The combined ecological risk of QNs showed high risk level (RQsum>1), whereas the combined resistance risk of QNs showed medium risk level (0.1

Asunto(s)
Quinolonas , Suelo , Humanos , Suelo/química , Nitratos/análisis , Espectrometría de Masas en Tándem , Antibacterianos/análisis , Quinolonas/análisis , Medición de Riesgo , Nitrógeno/análisis
10.
Int J Biol Macromol ; 238: 124165, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36963537

RESUMEN

Colorectal cancer (CRC) is one of the three major malignant tumors in the world. The major treatments currently recommended for it are surgery, radiotherapy, and chemotherapy, all of which are frequently accompanied by a poor prognosis and high recurrence rate. To limit cell proliferation and metastasis, trigger cell apoptosis, and regulate tumor microenvironment (TME), researchers are focusing attention on investigating highly effective and non-toxic natural medicines. According to the research reported in 89 pieces of related literature, between 2018 and 2021, specialists extracted 48 different types of polysaccharides with CRC inhibitory actions from various plants, including Dendrobium officinale Kimura et Migo., Nostoc commune Vaucher, and Ganoderma lucidum (Leyss. ex Fr.) Karst. The novel founded mechanisms mainly include: inhibiting cancer cell proliferation by acting on IRS1/PI3K/Akt and IL-6/STAT3 pathways; inducing cancer cell apoptosis by acting on LncRNA HOTAIR/Akt mediated-intrinsic apoptosis, or regulating the TNF-α-mediated extrinsic apoptosis; inducing cancer cell autophagy by acting on endoplasmic reticulum stress or mTOR-TFEB pathway; inhibiting cancer cell metastasis by regulating Smad2/3 and TLR4/JNK pathways; regulating TME in CRC; and maintaining the intestinal barrier. This review will provide more novel research strategies and a solid literature basis for the application of polysaccharides in the treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Proliferación Celular , Neoplasias Colorrectales/patología , Apoptosis , Línea Celular Tumoral , Microambiente Tumoral
11.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768602

RESUMEN

Colorectal carcinoma (CRC) is a kind of malignant tumor closely related to ulcerative colitis. Xanthone derivatives are one of the most promising therapeutic drugs which have been used in phase I/II clinical trials for cancer therapy. Our previous study indicated that the aerial parts of Gentianella acuta Michx. Hulten (GA) was rich in xanthones and showed a good therapeutic effect on ulcerative colitis in mice, suggesting that GA xanthones might have some therapeutic or ameliorative effects on CRC. However, no relevant study has been reported. This study aims to find the effective substances of GA inhibiting CRC and clarify their mechanism. Solvent extraction, column chromatographic separation, and LC-MS analysis were used to characterize the 70% EtOH extract of GA and track xanthones abundant fraction XF. MTT assay was carried out to clarify the activity of GA fractions; the result showed XF to be the main active fraction. LC-MS analysis was executed to characterize XF, 38 xanthones were identified. Network pharmacology prediction, in vitro activity screening, and molecular docking assay were combined to predict the potential mechanism; the PI3K/Akt/mTOR signaling pathway was found to be most important. Western blot assay on the main active xanthones 1,3,5-trihydroxyxanthone (16), 1,3,5,8-tetrahydroxyxanthone (17), 1,5,8-trihydroxy-3-methoxyxanthone (18), and 1,7-dihydroxy-3,8-dimethoxyxanthone (19) was used to verify the above prediction; these xanthones were found to inhibit the PI3K/Akt/mTOR signaling pathway, and 17 played a significant role among them through Western blot assay using PI3K/AKT/mTOR agonist IGF-1. In conclusion, this study demonstrated that GA xanthones were effective compounds of GA inhibiting CRC by regulating PI3K/Akt/mTOR signaling pathway transduction, at least. Importantly, 1,3,5,8-tetrahydroxyxanthone (17), the most abundant active xanthone in GA, might be a candidate drug for CRC.


Asunto(s)
Colitis Ulcerosa , Neoplasias Colorrectales , Gentianella , Xantonas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Gentianella/química , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Xantonas/farmacología , Xantonas/química , Neoplasias Colorrectales/tratamiento farmacológico , Proliferación Celular
12.
Phytomedicine ; 110: 154639, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608502

RESUMEN

BACKGROUND: Jujube, a popular fruit from the Rhamnaceae family, relieves colorectal inflammation caused by spleen deficiency and has been used in many formulas in clinical for decades to treat colorectal cancer (CRC). As of yet, the therapeutic substances and mechanism of their action are unknown. PURPOSE: The purpose of this study is to define the therapeutic substances of jujube and its mechanism of action in treating CRC. METHODS: The pharmacological effects of jujube extract and its fractions were evaluated in vivo using a CRC mouse model induced by AOM/DSS. The DAI value, colon length, mortality, tumor burden, and histological tumor size of the treated animals were compared. To explore the potential therapeutic substances, LC-MS analysis was conducted to characterize the serum migration components. A network pharmacology experiment was carried out for potential molecular targets. To verify the therapeutic substances as well as the molecular mechanism of jujube intervening CRC, cellular MTT assay of the serum migration components, Western blot and IHC tests were conducted. RESULTS: The in vivo pharmacological studies showed that compared to AOM/DSS treated mice, the mortality and DAI value, tumor burden, and histological tumor size of jujube extract and its fat-soluble fraction (mainly contained triterpenes) treated mice were significantly reduced, and their colon lengths were obviously longer than AOM/DSS treated mice. The targeted-LC/MS analysis supposed triterpenes 3, 7, 9, 11, 12, 14, 17 - 21, and 25 - 28 to be the serum migration components, which might be the potential therapeutic substances. In the network pharmacology experiment, the GO annotation and enrichment analysis of the KEGG pathway indicated that PI3K-Akt pathway and inflammatory reaction were important factors for jujube inhibiting CRC. Cellular MTT assay of serum migration components indicated that the potential effective substances from fat-soluble fraction to be triterpenes 3, 7, 17, 19, 20, and 25. The Western blot and IHC assays implied that the jujube extract, its fat-soluble fraction, and triterpenes 7, 17, and 20 showed inhibition on the expression of PI3K/Akt/NF-κB signaling pathway-related proteins. Additionally, it was noted in the pharmacodynamic experiment that ZJL's effectiveness was more apparent than ZJH and SQL in tumor burden rate, colon length, and spleen weight, which indicated that the efficacy of ZJ is contributed from CD and SQ, and they may have a synergistic effect on anti-CRC. CONCLUSION: These results for the first time provide evidence that jujube triterpenes possess an anti-CRC effect, their mechanism was involving the control of the PI3K/Akt/NF-κB signaling pathway. What's more, the potential synergistic effect of the fat-soluble and water-soluble components found in this study provided a solid foundation for our deep understanding of how jujube can ameliorate CRC.


Asunto(s)
Neoplasias Colorrectales , Triterpenos , Ziziphus , Animales , Ratones , Ziziphus/metabolismo , FN-kappa B/metabolismo , Triterpenos/farmacología , Proteínas Proto-Oncogénicas c-akt , Frutas , Fosfatidilinositol 3-Quinasas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/patología
13.
Plant Sci ; 326: 111518, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36309250

RESUMEN

Fasciclin-like arabinogalactan proteins (FLAs) are a class of highly glycosylated glycoproteins that perform crucial functions in plant growth and development. This study was carried out to further explore their roles in pollen tube growth. The results showed that seven members (CoFLA1/2/3/4/7/8/17) of the CoFLAs family were identified by sequence characteristics, and they all possessed the fasciclin 1 (FAS1) domain and H1 and H2 conserved domains. They were all located on the plasma membranes of tobacco epidermal cells, and the GPI-anchor sequences of CoFLA1/2/3/4 determined the membrane localization. In flower tissues, CoFLA2 and CoFLA8 were not expressed in the pollen tube but were expressed in the unpollinated style and ovary; the others were all expressed in the pollen tube. In the pollination-compatible style and ovary, they exhibited different expression patterns. Furthermore, all CoFLAs promoted pollen germination in vitro, while only CoFLA7 significantly promoted pollen tube elongation, and the expression of CoFLA1/3/4/7/17 in pollen tubes was regulated by CoFLA proteins. The ABA and ABA synthetic inhibitor (sodium tungstate, ST) both inhibited pollen tube elongation; however, only ST downregulated the expression of CoFLA1/7/17 and upregulated the expression of CoFLA4. Taken together, these results demonstrate that CoFLAs may be significant in pollen tube growth in C. oleifera and that some CoFLAs may participate in the regulation of ABA signaling.


Asunto(s)
Tubo Polínico , Árboles , Árboles/metabolismo , Mucoproteínas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Front Immunol ; 13: 1018973, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532047

RESUMEN

Visfatin, a multifunctional adipocytokine, is particularly important in the regulation of apoptosis and inflammation through an unidentified mechanism. Clarifying the control mechanisms of visfatin on inflammation and apoptosis in RAW264.7 cells and mice immunological organs was the goal of the current investigation. In order to create a pathophysiological model, the RAW264.7 cells were stimulated with 200 ng/mL visfatin and 20 µg/mL lipopolysaccharide (LPS), either separately or combined. The effects of exogenous visfatin on inflammation and apoptosis in RAW264.7 cells were investigated by flow cytometry assay, RNA-seq analysis and fluorescence quantitative PCR. According to the findings, exogenous visfatin exhibits dual effects on inflammation by modulating the expression of IL-1α, TNFRSF1B, and LIF as well as taking part in various signaling pathways, including the MAPK and Rap1 signaling pathways. By controlling the expression levels of Bcl2l1, Bcl2a1a, and Fas and primarily participating in the PI3K/AKT signaling pathway and Hippo signaling pathway, exogenous visfatin can inhibit apoptosis in RAW264.7 cells. The visfatin inhibitor FK866 was used to further confirm the effects of visfatin on inflammation and apoptosis in mice immune organs. Subsequently, mice spleen and thymus were collected. It is interesting to note that in LPS-treated mice, suppression of endogenous visfatin might worsen the immune system's inflammatory response and even result in rapid mortality. Additionally, endogenous visfatin promotes the apoptosis in mice immune organs by regulating the expression levels of Bcl2l1, Fas, Caspase 3, Bcl2a1a, and Bax. Together, these results imply that visfatin is a multifaceted molecule that regulates inflammation and apoptosis in RAW264.7 cells and mice immunological organs by taking part in a variety of biological processes and regulating the amounts of associated cytokines expression. Our findings offer additional understandings of how visfatin affects apoptosis and inflammation.


Asunto(s)
Lipopolisacáridos , Nicotinamida Fosforribosiltransferasa , Ratones , Animales , Nicotinamida Fosforribosiltransferasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Citocinas/metabolismo , Apoptosis , Inflamación
15.
Curr Issues Mol Biol ; 44(11): 5405-5415, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36354678

RESUMEN

Camellia oleifera is a woody edible oil species with late self-incompatibility characteristics. Previous transcriptome analysis showed that genes involved in jasmonic acid signal transduction were significantly different in self-and cross-pollinated pistils of Camellia oleifera. To investigate the relationship between jasmonate signal and self-incompatibility by studying the core genes of jasmonate signal transduction. The results showed that exogenous JA and MeJA at 1.0 mM significantly inhibited pollen tube germination and pollen tube elongation. and JA up-regulated CoCOI1, CoJAZ1, and CoMYC, the core genes of jasmonate signal transduction. Subcellular localization indicated that CoCOI1 and CoJAZ1 were located in the nucleus and CoMYC2 in the endoplasmic reticulum. The three genes exhibited tissue-specific expression pattern. CoCOI1 was significantly expressed in pollen, CoJAZ1 was significantly expressed in ovary, CoMYC2 was significantly expressed in filaments, but not in pollen. Furthermore, CoJAZ1 and CoMYC2 were highly expressing at 24 h in self-pollinated styles. These results suggested that JA signal transduction of C. oleifera was involved in the process of self-pollination, and thus in the process of plant defense. When pollen tubes grew slowly in the style, ovary may receive JA signal, which initiates the molecular mechanism of inhibiting the growth of self-pollinating pollen tubes.

16.
Huan Jing Ke Xue ; 43(9): 4543-4555, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096595

RESUMEN

Sediment is the main storage medium of antibiotics in a water environment, and a growing body of research has focused on the distribution behavior of antibiotics in water-sediment. However, most of the previous studies were based on laboratory simulation, and less attention was paid to the distribution behavior of antibiotics in a natural water environment and its correlation with environmental factors. Thus, the surface water and sediment in Shijiazhuang were taken as the research object for this study. The temporal and spatial distribution characteristics of quinolone (QNs) antibiotics in Shijiazhuang water were analyzed by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS), calculating the distribution coefficients of quinolone (QNs) antibiotics in water and sediment, and confirming the main environmental factors influencing the distribution coefficient in natural water. The results showed that:① the content of ΣQNs in water and sediment ranged from 8.0 to 4.4×103 ng·L-1 and 16 to 2.2×103 ng·g-1 in Shijiazhuang water, whereas the primary QNs in water and sediment were enrofloxacin (ENR) and ofloxacin (OFL), respectively. ② The total concentrations of ΣQNs in Shijiazhuang water showed a tendency of being higher in December (1.0×104 ng·L-1) than in April (5.5×103 ng·L-1), and QNs in sediment were also higher in December (7.8×103 ng·g-1) than in April (6.2×103 ng·g-1). ③ The distribution coefficient of QNs in Shijiazhuang water varied from 34 to 2.9×105 L·kg-1 and showed a trend of being greater in December than in April. ④ The results of correlation analysis showed that total nitrogen (TN), nitrate nitrogen (NO3--N), nitrite nitrogen (NO2--N), and ammonia nitrogen (NH4+-N) were significantly correlated with most distribution coefficients of QNs[OFL, norfloxacin (NOR), ENR, difloxacin (DIF), and oxolinic acid (OXO)], whereas temperature (T), total organic carbon (TOC), and total dissolved solids (TDS) were significantly correlated with individual distribution coefficients of QNs[marbofloxacin (MAR) and DIF]. Therefore, the eutrophication level of water affects the distribution behavior of antibiotics in water-sediment.


Asunto(s)
Quinolonas , Contaminantes Químicos del Agua , Antibacterianos/análisis , Monitoreo del Ambiente , Nitrógeno/análisis , Quinolonas/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
17.
Huan Jing Ke Xue ; 43(9): 4684-4696, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096609

RESUMEN

Microbial communities are an important component of soil ecosystems. Long-term low content antibiotic pollution will affect the structure and function of microbial communities in soil. Therefore, Shijiazhuang City was selected as the study area, in which twelve sample points were set up in September 2020. These sample sites were divided into four areas (S1, S2, S3, and S4) according to spatial orientation. Ultra-high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) was applied to determine the content of typical antibiotic-quinolones (QNs) in the soil. 16S rRNA high-throughput sequencing technology was used to study the microbial community structure and diversity in the soil. The results showed that:① the total detected contents of QNs in the four areas were S3 (313.5 µg·kg-1)>S4 (65.54 µg·kg-1)>S1 (46.19 µg·kg-1)>S2 (12.63 µg·kg-1). The content of norfloxacin (NOR) was the highest (91.99 µg·kg-1), whereas the content of oxolinic acid (OXO) was the lowest (0.4486 µg·kg-1). ② For grain size, the proportion of powder (2-50 µm) was the highest (66.7%-93.2%), whereas the proportion of clay (less than 2 µm) was the lowest (2.50%-9.10%). For physical and chemical parameters, total phosphorus (TP) and ammonia nitrogen (NH4+-N) showed non-significant spatial differences, whereas nitrate nitrogen (NO3--N), nitrite nitrogen (NO2--N), and grain size showed significant spatial differences. ③ For microbial community composition, there were six dominant bacteria phyla and five dominant bacteria genera, among which Actinobacteriota (18.3%-34.6%) and Proteobacteria (13.6%-34.1%) were the dominant bacteria phyla, and Arthrobacter (3.24%-8.61%) and Nitrososphaeraceae (2.93%-9.46%) were the dominant bacteria genera. The diversity results showed the highest value in the S2 area (6.48) and the lowest value in the S3 area (5.89). ④ QNs and soil physical and chemical parameters significantly changed the structural composition of microbial communities, and OXO, NO3--N, and soil particle size affected the diversity of microbial communities. FLU, NH4+-N, NO2--N, and soil particle size affected the function of the microbial community. Therefore, it is necessary to further strengthen the risk control of antibiotics in the soil of Shijiazhuang City.


Asunto(s)
Microbiota , Quinolonas , Antibacterianos/farmacología , Bacterias/genética , Nitrógeno/análisis , Dióxido de Nitrógeno/análisis , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo , Espectrometría de Masas en Tándem
18.
Microbiol Res ; 261: 127047, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35552098

RESUMEN

Streptococcus suis (S. suis) is an important zoonotic pathogen threatening the global pig farming industry. It causes respiratory and digestive tract infections simultaneously in pigs. The balanced gut microbiota not only affects the local mucosal immune response but also involves the regulation of the immune status of the distant lung tissues that is termed as "gut-lung" axis. Whether S. suis affects the gut during lung infection and how does the intestinal microbial disturbance play role in the development of lung infection during S. suis exposure is not clear yet. Therefore, in the current study, we constructed the animal model using six-week-old mice (N = 48) divided into four groups with S. suis serotype 2 (SS2)-induced lung infection and the antibiotic treated gut microbiota dysbiosis. By means of various techniques (like HE staining, RT-qPCR, Western Blot and ELISA and viability detection) we explored that S. suis can concurrently cause intestinal tissue damage and inflammation after lung infection. Moreover, gut microbiota dysbiosis changes the balance of Th1/Th2 cells that aggravates lung injury during the infection. Thus, "gut-lung" axis of the communication between the gut microbiota and lung infection was established through the spleen and blood. In addition, intestinal dysbacteriosis can affect alveolar macrophage activity for a long time and the balance of gut microbiota plays an important role in lung infection caused by S. suis. Hence, this study clarified the pulmonary infection caused by SS2 from the perspective of the intestinal microbiota providing novel theoretical basis for the treatment of related lung diseases.


Asunto(s)
Microbioma Gastrointestinal , Streptococcus suis , Animales , Modelos Animales de Enfermedad , Disbiosis , Pulmón , Ratones , Streptococcus suis/fisiología , Porcinos
19.
Front Plant Sci ; 13: 1065872, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762174

RESUMEN

Introduction: Self-incompatibility (SI) is an important strategy for plants to maintain abundant variation to enhance their adaptability to the environment. Camellia oleifera is one of the most important woody oil plants and is widely cultivated in China. Late acting self-incompatibility (LSI) in C. oleifera results in a relatively poor fruit yield in the natural state, and understanding of the LSI mechanism remains limited. Methods: To better understand the molecular expression and gene coexpression network in the LSI reaction in C. oleifera, we conducted self- and cross-pollination experiments at two different flower bud developmental stages (3-4 d before flowering and 1 d before flowering), and cytological observation, fruit setting rate (FSR) investigation and RNA-Seq analysis were performed to investigate the mechanism of the male -female interaction and identify hub genes responsible for the LSI in C. oleifera. Results: Based on the 21 ovary transcriptomes, a total of 7669 DEGs were identified after filtering out low-expression genes. Weighted gene coexpression network analysis (WGCNA) divided the DEGs into 15 modules. Genes in the blue module (1163 genes) were positively correlated with FSR, and genes in the pink module (339 genes) were negatively correlated with FSR. KEGG analysis indicated that flavonoid biosynthesis, plant MAPK signaling pathways, ubiquitin-mediated proteolysis, and plant-pathogen interaction were the crucial pathways for the LSI reaction. Fifty four transcription factors (TFs) were obtained in the two key modules, and WRKY and MYB were potentially involved in the LSI reaction in C. oleifera. Network establishment indicated that genes encoding G-type lectin S-receptor-like serine (lecRLK), isoflavone 3'-hydroxylase-like (CYP81Q32), cytochrome P450 87A3-like (CYP87A3), and probable calcium-binding protein (CML41) were the hub genes that positively responded to the LSI reaction. The other DEGs inside the two modules, including protein RALF-like 10 (RALF), F-box and pectin acetylesterase (MTERF5), might also play vital roles in the LSI reaction in C. oleifera. Discussion: Overall, our study provides a meaningful resource for gene network studies of the LSI reaction process and subsequent analyses of pollen-pistil interactions and TF roles in the LSI reaction, and it also provides new insights for exploring the mechanisms of the LSI response.

20.
Physiol Plant ; 172(4): 2181-2190, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33786839

RESUMEN

Salicylic acid (SA) is a plant hormone involved in a series of growth, development, and stress responses in plants. Nonexpressor of pathogenesis-related genes 1 (NPR1) is the core regulatory gene in the process of SA-mediated systemic acquired resistance (SAR). Whether NPR1 is involved in pollen tube growth mediated by SA and its derivative MeSA (methyl salicylate) remains to be explored. Here, we found that the contents of endogenous SA and MeSA in self- or cross-pollinated pistils changed significantly, and exogenous SA and MeSA significantly promoted pollen germination and pollen tube elongation of Camellia oleifera at lower concentrations. CoNPR1, CoNPR3.1, CoNPR3.2, and CoNPR5 were identified, and they were all located in the nucleus. A high level of consistency was observed across the phylogenetic relationships, gene structures, and functional domains, indicating a clear division of function, as observed in other species. The expression levels of CoNPR1, CoNPR3.1, CoNPR3.2, and CoNPR5 in self- and cross-pollinated pistils had certain regularity. Furthermore, they exhibited tissue-specific expression pattern. CoNPR1 and CoNPR3.1 were expressed in pollen tubes, whose expression was regulated by SA or MeSA, and their expression patterns were basically consistent with the trend of pollen germination. These results indicate that SA and MeSA are involved in the pollen tube growth of C. oleifera, and CoNPRs may play an important role therein.


Asunto(s)
Camellia , Tubo Polínico , Flores , Regulación de la Expresión Génica de las Plantas , Filogenia , Ácido Salicílico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...