Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 7(5): 191692, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32537193

RESUMEN

The corrosion inhibition effect and adsorption behaviour of 1-phenyl-3-(phenylamino)propan-1-one (PPAPO) on N80 steel in hydrochloric acid solution have been investigated by Fourier transform infrared (FTIR), electrochemical method and scanning electron microscopy. The corrosion inhibition mechanism of PPAPO mixed with Na2WO4 was interpreted from the thermodynamic point of view. The results indicated that PPAPO mixed with Na2WO4 acted as a mixed-type inhibitor. The inhibition film formed on N80 steel surface can increase the charge transfer resistance and prevent the occurrence of corrosion reaction, thereby reducing the corrosion rate of metal surface. The inhibition efficiency was up to 96.65%; the inhibitor PPAPO with Na2WO4 showed good synergistic effect on N80 corrosion behaviour in HCl solution. The adsorption behaviour of inhibitors on N80 steel surface was in accordance with the Langmuir adsorption model and mainly belonged to chemisorption. The adsorption process of PPAPO on N80 surface was spontaneous and irreversible endothermic reaction.

2.
RSC Adv ; 10(58): 35302-35309, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35515696

RESUMEN

The effect of chromium on the corrosion behavior of low Cr-bearing alloy steel in a wet gas pipeline with a high flow rate was studied using a rotating cylinder electrode (RCE) and self-built wet gas flow loop device. The results show that the addition of chromium in the steel can increase the flow accelerated corrosion (FAC) resistance of steel effectively. It was hard for pure FeCO3 to deposit onto the carbon steel surface to form an intact corrosion film when the flow rate or wall shear stress was high. However, a mixture of Cr(OH)3 and FeCO3 can still be deposited onto the 3Cr steel surface and form an intact and protective corrosion film even under conditions with a 212 Pa wall shear stress in the wet gas pipeline.

3.
Materials (Basel) ; 12(3)2019 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-30691213

RESUMEN

X80 steel has great risk of corrosion in high voltage direct current (HVDC) interference cases. In this study, the anodic polarization behavior of X80 steel under high potential and current density in Na2SO4 solution was investigated. The I × R drop was eliminated using current interrupt technique during the potentiodynamic measurement. Therefore, the real polarization curve was obtained. The corrosion behavior was investigated by galvanostatic polarization, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results show a new form of passivation route. The steel dissolved actively below -0.388 VSCE, then became partly passivated from -0.388 to 1.448 VSCE, and fully passivated above 1.448 VSCE. The passive film was formed containing Fe2O3 and FeOOH, and resistant to SO42- ions. It not only blocked the direct dissolution of steel, but also facilitated oxygen evolution. The corrosion rates of steel samples decreased after the passivation.

4.
RSC Adv ; 9(14): 7698-7704, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35521164

RESUMEN

Pipeline steel has considerable risk of corrosion in the high voltage direct current interference cases. Thus, under high potential/current density conditions, the anodic polarization behaviour of X80 steel in Na2SO4 solution and the influence of Cl- ions were investigated using reversed potentiodynamic polarization, the current interrupt method, galvanostatic polarization, scanning electron microscopy, and X-ray photoelectron spectroscopy. In the Na2SO4 solution free of Cl- ions, steel was passivated above 0.120 A cm-2 and the potential increased from -0.32 V to 1.43 V. The passive film was composed of Fe3O4, γ-Fe2O3, and FeOOH. The addition of Cl- ions observably influenced the passivation by attacking the passivate film. Low concentration of Cl- ions (<5 mg L-1 NaCl) could set higher demands of current density to achieve passivation and increase the requirement of potential to maintain passivation. A high concentration of Cl- ions (>5 mg L-1 NaCl) completely prevented passivation, showing strong corrosiveness. Thus, the X80 steel was corroded even under high-current-density conditions. The corrosion products were mainly composed of Fe3O4, α-Fe2O3, and FeOOH.

5.
RSC Adv ; 9(21): 11641-11648, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35516996

RESUMEN

The corrosion behavior of N80 carbon steel in a simulated formation water system saturated with CO2 under high pressure at 100 °C was investigated. The effect of the CO2 partial pressure on the electrochemical behavior and surface morphologies of the N80 carbon steel was analyzed by in situ electrochemical methods and surface analysis, combined with a series of thermodynamic calculations of the potential of anodic/cathodic reactions. While an increase in the CO2 partial pressure did not alter the corrosion mechanism of the N80 steel, it resulted in higher concentrations of H+ and HCO3 - ions, thereby significantly enhancing the rate of the cathodic reactions. The precipitation rate of FeCO3 increased with the CO2 partial pressure, with small and fine grains nucleating and growing on the steel surface with poor protectiveness.

6.
RSC Adv ; 8(43): 24679-24689, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35539170

RESUMEN

The susceptibility of super 13Cr steel to stress corrosion cracking (SCC) was assessed through slow strain rate testing in simulated formation water saturated with CO2 under a high-temperature and high-pressure (HTHP) environment. The evolution, morphology, and chemistry of fracture and corrosion products on the steel surface were evaluated using in situ electrochemical methods and surface analysis. Results indicate that the occurrence of pitting corrosion increases SCC susceptibility. At 150 °C, the degradation of a surface film induces pitting corrosion because of an increase in anodic processes. The presence of Cl- causes film porosity, and CO2 reduces the Cr(OH)3/FeCO3 ratio in the inner film, which further promotes Cl--induced porosity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA