Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1273723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020919

RESUMEN

Human umbilical cord mesenchymal stem cells (hUC-MSCs) are proposed for the treatment of acute lung injury and atopic dermatitis. To advance hUC-MSC entry into clinical trials, the effects of hUC-MSCs on the general toxicity, immune perturbation and toxicokinetic study of hUC-MSCs in cynomolgus monkeys were assessed. hUC-MSCs were administered to cynomolgus monkeys by intravenous infusion of 3.0 × 106 or 3.0 × 107cells/kg or by subcutaneous injection of 3.0 × 107cells/kg twice a week for 3 weeks followed by withdrawal and observation for 6 weeks. Toxicity was assessed by clinical observation, clinical pathology, ophthalmology, immunotoxicology and histopathology. Moreover, toxicokinetic study was performed using a validated qPCR method after the first and last dose. After 3rd or 4th dosing, one or three the monkeys in the intravenous high-dose group exhibited transient coma, which was eliminated by slow-speed infusion after 5th or 6th dosing. In all dose groups, hUC-MSCs significantly increased NEUT levels and decreased LYMPH and CD3+ levels, which are related to the immunosuppressive effect of hUC-MSCs. Subcutaneous nodules and granulomatous foci were found at the site of administration in all monkeys in the subcutaneous injection group. Other than above abnormalities, no obvious systemic toxicity was observed in any group. The hUC-MSCs was detectable in blood only within 1 h after intravenous and subcutaneous administration. The present study declared the preliminary safety of hUC-MSCs, but close monitoring of hUC-MSCs for adverse effects, such as coma induced by intravenous infusion, is warranted in future clinical trials.

2.
Vaccines (Basel) ; 10(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36560490

RESUMEN

Although the new coronavirus disease 2019 (COVID-19) outbreak occurred in late 2019, it is still endemic worldwide, and has become a global public health problem. Vaccination against SARS-CoV-2 is considered to be the most effective intervention to prevent the spread of COVID-19. ZF2001 is a recombinant protein vaccine based on SARS-CoV-2 receptor-binding domain (RBD) subunit which contains aluminum adjuvant. In order to advance our research on ZF2001 into clinical trial, we investigated the general toxicity and immunogenicity of ZF2001 in cynomolgus monkeys and assessed the possible target organs for vaccine-induced toxicity. In the present research, we observed no significant systemic toxicities and abnormal cardiovascular and respiratory events following four times injections of intramuscular ZF2001 in cynomolgus monkeys. Histological examination revealed recoverable inflammatory changes in quadricep muscle and adjacent lymph node at the vaccine injection site. As expected, the vaccine can produce a strongly specific binding antibody and neutralizing antibodies in cynomolgus monkeys after inoculation. Taken together, our regulatory toxicology research proves the safety and immunogenicity of the ZF2001 vaccine, supporting its entry into large scale clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA