Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 492, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424663

RESUMEN

BACKGROUND: Pathogenic microorganism pollution has been a challenging public safety issue, attracting considerable scientific interest. A more problematic aspect of this phenomenon is that planktonic bacteria exacerbate biofilm formation. There is an overwhelming demand for developing ultra-efficient, anti-drug resistance, and biocompatibility alternatives to eliminate stubborn pathogenic strains and biofilms. RESULTS: The present work aims to construct a visible light-induced anti-pathogen agents to ablate biofilms using the complementary merits of ROS and cationic polymers. The photosensitizer chlorin e6-loaded polyethyleneimine-based micelle (Ce6-TPP-PEI) was constructed by an amphiphilic dendritic polymer (TPP-PEI) and physically loaded with photosensitizer chlorin e6. Cationic polymers can promote the interaction between photosensitizer and Gram-negative bacteria, resulting in enhanced targeting of PS and lethality of photodynamic therapy, and remain active for a longer duration to prevent bacterial re-growth when the light is turned off. As expected, an eminent antibacterial effect was observed on the Gram-negative Escherichia coli, which is usually insensitive to photosensitizers. Surprisingly, the cationic polymer and photodynamic combination also exert significant inhibitory and ablative effects on fungi and biofilms. Subsequently, cell hemolysis assessments suggested its good biocompatibility. CONCLUSIONS: Given the above results, the platform developed in this work is an efficient and safe tool for public healthcare and environmental remediation.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Polímeros/farmacología , Fotoquimioterapia/métodos , Biopelículas , Luz , Cationes/farmacología
2.
Mater Sci Eng C Mater Biol Appl ; 128: 112327, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474878

RESUMEN

Chitosan oligosaccharide (COS), a time-dependent antimicrobial carbohydrate, is found antifungal active with a short duration of action due to excessive solubility. We attempted to address this issue by employing a hydrogel as a COS carrier. In this research, macroporous zwitterionic composite cryogels composed of COS and poly(N-methacryl arginine) (PMarg) were fabricated, serving as long-term antifungal dressings. Firstly, Marg was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), 1H and 13C nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). Then, the COS/PMarg cryogels were prepared by redox initiation cryopolymerization. The macroporous morphology of the cryogels was confirmed by scanning electron microscope (SEM) with pore size varying from 20.86 to 50.87 µm. FTIR indicated that hydrogen bonding formed between COS and PMarg, and the interaction elevated thermal stability of the cryogels as evidenced by thermal-gravimetric analysis (TGA). Swelling capacity, mechanical properties, and COS release behavior of the COS/PMarg cryogels were investigated. With the release of COS, the antifouling activity of the cryogel increased. Antimicrobial tests indicated the COS/PMarg cryogel could effectively inhibit the proliferation of Candida albicans. It demonstrated that the macroporous zwitterionic COS/PMarg composite cryogel might be a potential antifungal dressing with sequential "sterilization-release" capacity.


Asunto(s)
Quitosano , Criogeles , Antifúngicos/farmacología , Oligosacáridos , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
3.
J Mater Chem B ; 9(28): 5670-5681, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34195715

RESUMEN

The development of long-wavelength emission carbon dots as a label-free sensing platform for the direct detection of glutathione (GSH) is still of great challenge. Herein, novel rose-red fluorescence carbon dots (wCDs) with a long-wavelength emission of 654 nm were successfully synthesized by a one-step microwave-solvothermal treatment of biomass Wedelia trilobata. The biomass-based wCDs could sensitively respond to copper ions (Cu2+) with a limit of detection (LOD) of 0.22 µM, which could be utilized as the fluorescence turn off-on sensor for the detection of GSH through recovering their fluorescence quenched by Cu2+. Moreover, the label-free wCDs with abundant active functional groups could be used to construct a direct quenching platform for the sensitive and selective detection of GSH by the dynamic quenching effect within 20 s without further modification, displaying a good linear range of 0-3.0 mM with a LOD of 35 µM that fits well with the GSH content in living cells (0.5-10 mM). Additionally, confocal imaging of living cells indicates that as-prepared wCDs with high photobleaching resistance and favorable biocompatibility possess the capacity for real-time monitoring of the variations of intracellular Cu2+ and GSH levels, and distinguishing cancerous cells from normal cells owing to the overexpression of GSH in cancerous cells. This study opens a new vision for developing an efficient and sensitive fluorescent sensor for the detection of GSH, and demonstrates the great prospects for wCDs in ion/molecule tracking, bioimaging and cancer diagnosis.


Asunto(s)
Carbono/química , Glutatión/análisis , Imagen Óptica , Puntos Cuánticos/química , Wedelia/química , Animales , Biomasa , Carbono/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fluorescencia , Humanos , Ratones , Espectrometría de Fluorescencia
4.
PLoS One ; 14(9): e0218742, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31518361

RESUMEN

Complexation of microbial polymer in soluble state could impact the solubility, mobility, and bioavailability of heavy metals in the environment. The complexation of a bacterial exopolymer, poly-γ-glutamic acid (γ-PGA), with Pb2+ was studied using the polarographic method and circular dichroism measurement in soluble state. The number of available binding sites was determined based on the Chau's method and was found to be 0.04, 1.12, 3.56 and 4.51 mmol/(g dry weight of γ-PGA) at pH 3.4, 4.2, 5.0 and 6.2, respectively. Further, the number of binding sites was determined based on the Ruzic's method and was found to be 3.60 and 4.41 mmol/(g dry weight of γ-PGA) for pH 5.0 and 6.2, respectively. The constant (expressed as log K) values were 5.8 and 6.0 at pH 5.0 and 6.2. Compared to biopolymers secreted by other microorganisms, such as extracellular polymeric substances extraction from activated sludge, γ-PGA was a more efficient Pb2+ carrier from pH 5.0 to 6.2. The secondary structure of γ-PGA varied significantly when Pb2+ added. Ca2+ or Mg2+ replace a portion of the adsorbed Pb2+. However, the portion of Pb2+ involved in changing the γ-PGA conformation was not easily replaced by Ca2+ and Mg2+.


Asunto(s)
Complejos de Coordinación/química , Iones/química , Plomo/química , Conformación Molecular , Ácido Poliglutámico/análogos & derivados , Concentración de Iones de Hidrógeno , Modelos Moleculares , Ácido Poliglutámico/química , Solubilidad , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA