Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928496

RESUMEN

The tumor microenvironment (TME) is crucial in tumor development, metastasis, and response to immunotherapy. DNA methylation can regulate the TME without altering the DNA sequence. However, research on the methylation-driven TME in clear-cell renal cell carcinoma (ccRCC) is still lacking. In this study, integrated DNA methylation and RNA-seq data were used to explore methylation-driven genes (MDGs). Immune scores were calculated using the ESTIMATE, which was employed to identify TME-related genes. A new signature connected with methylation-regulated TME using univariate, multivariate Cox regression and LASSO regression analyses was developed. This signature consists of four TME-MDGs, including AJAP1, HOXB9, MYH14, and SLC6A19, which exhibit high methylation and low expression in tumors. Validation was performed using qRT-PCR which confirmed their downregulation in ccRCC clinical samples. Additionally, the signature demonstrated stable predictive performance in different subtypes of ccRCC. Risk scores are positively correlated with TMN stages, immune cell infiltration, tumor mutation burden, and adverse outcomes of immunotherapy. Interestingly, the expression of four TME-MDGs are highly correlated with the sensitivity of first-line drugs in ccRCC treatment, especially pazopanib. Molecular docking indicates a high affinity binding between the proteins and pazopanib. In summary, our study elucidates the comprehensive role of methylation-driven TME in ccRCC, aiding in identifying patients sensitive to immunotherapy and targeted therapy, and providing new therapeutic targets for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Microambiente Tumoral , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Humanos , Microambiente Tumoral/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Pirimidinas/uso terapéutico , Indazoles/uso terapéutico , Indazoles/farmacología , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Biomarcadores de Tumor/genética , Femenino , Simulación del Acoplamiento Molecular , Perfilación de la Expresión Génica/métodos , Masculino
2.
Front Cell Dev Biol ; 12: 1359451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694823

RESUMEN

Immunotherapy has changed the landscape of treatment options for patients with hepatocellular cancer. Checkpoint inhibitors are now standard of care for patients with advanced tumours, yet the majority remain resistant to this therapy and urgent approaches are needed to boost the efficacy of these agents. Targeting the liver endothelial cells, as the orchestrators of immune cell recruitment, within the tumour microenvironment of this highly vascular cancer could potentially boost immune cell infiltration. We demonstrate the successful culture of primary human liver endothelial cells in organ-on-a-chip technology followed by perfusion of peripheral blood mononuclear cells. We confirm, with confocal and multiphoton imaging, the capture and adhesion of immune cells in response to pro-inflammatory cytokines in this model. This multicellular platform sets the foundation for testing the efficacy of new therapies in promoting leukocyte infiltration across liver endothelium as well as a model for testing cell therapy, such as chimeric antigen receptor (CAR)-T cell, capture and migration across human liver endothelium.

3.
NPJ Regen Med ; 9(1): 19, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724586

RESUMEN

Cell therapies are emerging as promising treatments for a range of liver diseases but translational bottlenecks still remain including: securing and assessing the safe and effective delivery of cells to the disease site; ensuring successful cell engraftment and function; and preventing immunogenic responses. Here we highlight three therapies, each utilising a different cell type, at different stages in their clinical translation journey: transplantation of multipotent mesenchymal stromal/signalling cells, hepatocytes and macrophages. To overcome bottlenecks impeding clinical progression, we advocate for wider use of mechanistic in silico modelling approaches. We discuss how in silico approaches, alongside complementary experimental approaches, can enhance our understanding of the mechanisms underlying successful cell delivery and engraftment. Furthermore, such combined theoretical-experimental approaches can be exploited to develop novel therapies, address safety and efficacy challenges, bridge the gap between in vitro and in vivo model systems, and compensate for the inherent differences between animal model systems and humans. We also highlight how in silico model development can result in fewer and more targeted in vivo experiments, thereby reducing preclinical costs and experimental animal numbers and potentially accelerating translation to the clinic. The development of biologically-accurate in silico models that capture the mechanisms underpinning the behaviour of these complex systems must be reinforced by quantitative methods to assess cell survival post-transplant, and we argue that non-invasive in vivo imaging strategies should be routinely integrated into transplant studies.

4.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579685

RESUMEN

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Señalizadoras YAP , Animales , Humanos , Ratones , Proliferación Celular , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/agonistas , Proteínas Señalizadoras YAP/efectos de los fármacos , Proteínas Señalizadoras YAP/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
5.
iScience ; 26(10): 107966, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810232

RESUMEN

Liver sinusoidal endothelial cells (LSEC) undergo significant phenotypic change in chronic liver disease (CLD), and yet the factors that drive this process and the impact on their function as a vascular barrier and gatekeeper for immune cell recruitment are poorly understood. Plasmalemma-vesicle-associated protein (PLVAP) has been characterized as a marker of LSEC in CLD; notably we found that PLVAP upregulation strongly correlated with markers of tissue senescence. Furthermore, exposure of human LSEC to the senescence-associated secretory phenotype (SASP) led to a significant upregulation of PLVAP. Flow-based assays demonstrated that SASP-driven leukocyte recruitment was characterized by paracellular transmigration of monocytes while the majority of lymphocytes migrated transcellularly. Knockdown studies confirmed that PLVAP selectively supported monocyte transmigration mediated through PLVAP's impact on LSEC permeability by regulating phospho-VE-cadherin expression and endothelial gap formation. PLVAP may therefore represent an endothelial target that selectively shapes the senescence-mediated immune microenvironment in liver disease.

6.
Nat Commun ; 14(1): 2066, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045811

RESUMEN

The thymus medulla is a key site for immunoregulation and tolerance, and its functional specialisation is achieved through the complexity of medullary thymic epithelial cells (mTEC). While the importance of the medulla for thymus function is clear, the production and maintenance of mTEC diversity remains poorly understood. Here, using ontogenetic and inducible fate-mapping approaches, we identify mTEC-restricted progenitors as a cytokeratin19+ (K19+) TEC subset that emerges in the embryonic thymus. Importantly, labelling of a single cohort of K19+ TEC during embryogenesis sustains the production of multiple mTEC subsets into adulthood, including CCL21+ mTEClo, Aire+ mTEChi and thymic tuft cells. We show K19+ progenitors arise prior to the acquisition of multiple mTEC-defining features including RANK and CCL21 and are generated independently of the key mTEC regulator, Relb. In conclusion, we identify and define a multipotent mTEC progenitor that emerges during embryogenesis to support mTEC diversity into adult life.


Asunto(s)
Tolerancia Inmunológica , Queratina-19 , Timo , Animales , Ratones , Diferenciación Celular , Células Epiteliales , Ratones Endogámicos C57BL , Células Madre
7.
Front Endocrinol (Lausanne) ; 14: 1088944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742380

RESUMEN

Background: Ovarian cancer (OC) is the most lethal gynecologic malignancy, yet the clinical results for OC patients are still variable. Therefore, we examined how elafin expression affects the patients' prognoses and immunotherapy responses in OC, which may facilitate treatment selection and improve prognosis. Methods: The elafin mRNA expression profile was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus. Elafin's prognostic potential and its relationship with clinical variables were investigated using Kaplan-Meier survival curves, time-dependent receiver operating characteristic curves as well as univariate and multivariate Cox regression models. As validation, protein expression in the tumor and adjacent tissues of OC patients was investigated by using immunohistochemistry (IHC). Comprehensive analyses were then conducted to explore the correlation between immune infiltration and elafin expression. Results: A higher mRNA expression of elafin was associated with an unfavorable prognosis in TCGA cohort and was validated in GSE31245 and IHC. Moreover, elafin was indicated as an independent risk factor for OC. A significantly higher protein expression of elafin was detected in the adjacent tissues of OC patients with shorter overall survival (OS). The immune-related pathways were mainly enriched in the high-elafin-mRNA-expression group. However, the mRNA expression of elafin was favorably correlated with indicators of the immune filtration and immunotherapy response, which also proved better immunotherapy outcomes. Conclusion: The high elafin expression was associated with an unfavorable OS, while it also indicated better immunotherapy responses. Thus, the detection of elafin is beneficial to diagnosis and treatment selection.


Asunto(s)
Neoplasias de los Genitales Femeninos , Neoplasias Ováricas , Humanos , Femenino , Elafina/genética , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Inmunoterapia , Estimación de Kaplan-Meier
8.
Sci Transl Med ; 14(674): eabj4375, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36475903

RESUMEN

Liver transplantation is the only curative option for patients with end-stage liver disease. Despite improvements in surgical techniques, nonanastomotic strictures (characterized by the progressive loss of biliary tract architecture) continue to occur after liver transplantation, negatively affecting liver function and frequently leading to graft loss and retransplantation. To study the biological effects of organ preservation before liver transplantation, we generated murine models that recapitulate liver procurement and static cold storage. In these models, we explored the response of cholangiocytes and hepatocytes to cold storage, focusing on responses that affect liver regeneration, including DNA damage, apoptosis, and cellular senescence. We show that biliary senescence was induced during organ retrieval and exacerbated during static cold storage, resulting in impaired biliary regeneration. We identified decoy receptor 2 (DCR2)-dependent responses in cholangiocytes and hepatocytes, which differentially affected the outcome of those populations during cold storage. Moreover, CRISPR-mediated DCR2 knockdown in vitro increased cholangiocyte proliferation and decreased cellular senescence but had the opposite effect in hepatocytes. Using the p21KO model to inhibit senescence onset, we showed that biliary tract architecture was better preserved during cold storage. Similar results were achieved by administering senolytic ABT737 to mice before procurement. Last, we perfused senolytics into discarded human donor livers and showed that biliary architecture and regenerative capacities were better preserved. Our results indicate that cholangiocytes are susceptible to senescence and identify the use of senolytics and the combination of senotherapies and machine-perfusion preservation to prevent this phenotype and reduce the incidence of biliary injury after transplantation.


Asunto(s)
Sistema Biliar , Humanos , Ratones , Animales , Constricción Patológica , Senescencia Celular
9.
Biomolecules ; 12(12)2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36551184

RESUMEN

BACKGROUND: Breast cancer (BRCA) is one of the most common cancers in women worldwide and a leading cause of death from malignancy. This study was designed to identify a novel biomarker for prognosticating the survival of BRCA patients. METHODS: The prognostic potential of eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) was assessed using RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) as training cohort and validation set, respectively. The functional enrichment analysis of differentially expressed genes (DEGs) was performed. The relationship between EIF4G1 and tumor microenvironment (TME) was analyzed. Immunotherapy responses were explored by the immunophenoscores (IPS) and tumor immune dysfunction and exclusion (TIDE) score. The Connectivity Map (CMap) was used to discover potentially effective therapeutic molecules against BRCA. Immunohistochemistry (IHC) was applied to compare the protein levels of EIF4G1 in normal and cancer tissues and to verify the prognostic value of EIF4G1. RESULTS: BRCA patients with increased expression of EIF4G1 had a shorter overall survival (OS) in all cohorts and results from IHC. EIF4G1-related genes were mainly involved in DNA replication, BRCA metastasis, and the MAPK signaling pathway. Infiltration levels of CD4+-activated memory T cells, macrophages M0, macrophages M1, and neutrophils were higher in the EIF4G1 high-expression group than those in the EIF4G1 low-expression group. EIF4G1 was positively correlated with T cell exhaustion. Lower IPS was revealed in high EIF4G1 expression patients. Five potential groups of drugs against BRCA were identified. CONCLUSION: EIF4G1 might regulate the TME and affect BRCA metastasis, and it is a potential prognostic biomarker and therapeutic target for BRCA.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Factor 4G Eucariótico de Iniciación , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Pronóstico , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
10.
Insect Biochem Mol Biol ; 151: 103866, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36347453

RESUMEN

The cornerstone of the reverse chemical ecology approach is the identification of odorant receptors (OR) sensitive to compounds in a large panel of odorants. In this approach, we de-orphanize ORs and, subsequently, measure behaviors elicited by these semiochemicals. After that, we evaluate behaviorally active compounds for applications in insect vector management. Intriguingly, multiple ORs encoded by genes highly expressed in mosquito antennae do not respond to any test odorant. One such case is CquiOR125 from the southern house mosquito, Culex quinquefasciatus Say. To better understand CquiOR125's role in Culex mosquito olfaction, we have cloned a CquiOR125 orthologue in the genome of the yellow fever mosquito, Aedes aegypti (L.), AaegOR11. Unlike the unresponsive nature of the orthologue in Cx. quinquefasciatus, oocytes co-expressing AaegOR11 and AaegOrco elicited robust responses when challenged with fenchone, 2,3-dimethylphenol, 3,4-dimethylphenol, 4-methycyclohexanol, and acetophenone. Interestingly, AaegOR11 responded strongly and equally to (+)- and (-)-fenchone, with no chiral discrimination. Contrary to reports in the literature, fenchone did not show any repellency activity against Ae. aegypti or Cx. quinquefasciatus. Laboratory and field tests did not show significant increases in egg captures in cups filled with fenchone solutions compared to control cups. The second most potent ligand, 2,3-dimethylphenol, showed repellency activity stronger than that elicited by DEET at the same dose. We, therefore, concluded that AaegOR11 is a mosquito repellent sensor. It is feasible that CquiOR125 responds to repellents that remain elusive.


Asunto(s)
Aedes , Culex , Repelentes de Insectos , Receptores Odorantes , Fiebre Amarilla , Animales , Aedes/genética , Culex/genética , Proteínas de Insectos , Repelentes de Insectos/farmacología , Mosquitos Vectores/genética , Receptores Odorantes/genética
11.
Front Endocrinol (Lausanne) ; 13: 950105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36004354

RESUMEN

Polycystic ovary syndrome (PCOS) exerts negative effects on females of childbearing age. It is important to identify more suitable models for fundamental research on PCOS. We evaluated animal models from a novel perspective with the aim of helping researchers select the best model for PCOS. RNA sequencing was performed to investigate the mRNA expression profiles in the ovarian tissues of mice with dehydroepiandrosterone (DHEA) plus high-fat diet (HFD)-induced PCOS. Meanwhile, 14 datasets were obtained from the Gene Expression Omnibus (GEO), including eight studies on humans, three on rats and three on mice, and genes associated with PCOS were obtained from the PCOSKB website. We compared the consistency of each animal model and human PCOS in terms of DEGs and pathway enrichment analysis results. There were 239 DEGs shared between prenatally androgenized (PNA) mice and PCOS patients. Moreover, 1113 genes associated with PCOS from the PCOSKB website were identified among the DEGs of PNA mice. A total of 134 GO and KEGG pathways were shared between PNA mice and PCOS patients. These findings suggest that the PNA mouse model is the best animal model to simulate PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Animales , Deshidroepiandrosterona , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/genética , Ratas , Virilismo
12.
Cell Stem Cell ; 29(3): 355-371.e10, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245467

RESUMEN

Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.


Asunto(s)
Trasplante de Hígado , Animales , Conductos Biliares/patología , Células Epiteliales/patología , Fibrosis , Humanos , Donadores Vivos , Ratones
13.
Front Oncol ; 12: 830908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299734

RESUMEN

Background: Ovarian cancer (OC) is one of the most lethal gynecologic malignancies and a leading cause of death in the world. Thus, this necessitates identification of prognostic biomarkers which will be helpful in its treatment. Methods: The gene expression profiles from The Cancer Genome Atlas (TCGA) and GSE31245 were selected as the training cohort and validation cohort, respectively. The Kaplan-Meier (KM) survival analysis was used to analyze the difference in overall survival (OS) between high and low RB transcriptional corepressor 1 (RB1) expression groups. To confirm whether RB1 was an independent risk factor for OC, we constructed a multivariate Cox regression model. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were conducted to identify the functions of differentially expressed genes (DEGs). The associations of RB1 with immune infiltration and immune checkpoints were studied by the Tumor Immune Estimation Resource (TIMER 2.0) and the Gene Expression Profiling Interactive Analysis (GEPIA). The immunohistochemistry (IHC) was performed to compare the expression level of RB1 in normal tissues and tumor samples, and to predict the prognosis of OC. Results: The KM survival curve of the TCGA indicated that the OS in the high-risk group was lower than that in the low-risk group (HR = 1.61, 95% CI: 1.28-2.02, P = 3×10-5), which was validated in GSE31245 (HR = 4.08, 95% CI: 1.21-13.74, P = 0.01) and IHC. Multivariate Cox regression analysis revealed that RB1 was an independent prognostic biomarker (HR = 1.66, 95% CI: 1.31-2.10, P = 2.02×10-5). Enrichment analysis suggested that the DEGs were mainly involved in cell cycle, DNA replication, and mitochondrial transition. The infiltration levels of fibroblast, neutrophil, monocyte and macrophage were positively correlated with RB1. Furthermore, RB1 was associated with immune checkpoint molecules (CTLA4, LAG3, and CD274). The IHC staining revealed higher expression of RB1 in tumor tissues as compared to that in normal tissues (P = 0.019). Overexpression of RB1 was associated with poor prognosis of OC (P = 0.01). Conclusion: These findings suggest that RB1 was a novel and immune-related prognostic biomarker for OC, which may be a promising target for OC treatment.

14.
Sci Signal ; 14(688)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158399

RESUMEN

In the adult liver, a population of facultative progenitor cells called biliary epithelial cells (BECs) proliferate and differentiate into cholangiocytes and hepatocytes after injury, thereby restoring liver function. In mammalian models of chronic liver injury, Notch signaling is essential for bile duct formation from these cells. However, the continual proliferation of BECs and differentiation of hepatocytes in these models have limited their use for determining whether Notch signaling is required for BECs to replenish hepatocytes after injury in the mammalian liver. Here, we used a temporally restricted model of hepatic repair in which large-scale hepatocyte injury and regeneration are initiated through the acute loss of Mdm2 in hepatocytes, resulting in the rapid, coordinated proliferation of BECs. We found that transient, early activation of Notch1- and Notch3-mediated signaling and entrance into the cell cycle preceded the phenotypic expansion of BECs into hepatocytes. Notch inhibition reduced BEC proliferation, which resulted in failure of BECs to differentiate into hepatocytes, indicating that Notch-dependent expansion of BECs is essential for hepatocyte regeneration. Notch signaling increased the abundance of the insulin-like growth factor 1 receptor (IGF1R) in BECs, and activating IGFR signaling increased BEC numbers but suppressed BEC differentiation into hepatocytes. These results suggest that different signaling mechanisms control BEC expansion and hepatocyte differentiation.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Regeneración Hepática , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Células Epiteliales , Hepatocitos , Factor I del Crecimiento Similar a la Insulina/genética , Hígado
15.
NPJ Regen Med ; 6(1): 28, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039998

RESUMEN

The stem cell ability to self-renew and lead regeneration relies on the balance of complex signals in their microenvironment. The identification of modulators of hepatic progenitor cell (HPC) activation is determinant for liver regeneration and may improve cell transplantation for end-stage liver disease. This investigation used different models to point out the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) as a key regulator of the HPC fate. We initially proved that in vivo models of biliary epithelial cells (BECs)/HPC activation show hepatic oxidative stress, which activates primary BECs/HPCs in vitro. NRF2 downregulation and silencing were associated with morphological, phenotypic, and functional modifications distinctive of differentiated cells. Furthermore, NRF2 activation in the biliary tract repressed the ductular reaction in injured liver. To definitely assess the importance of NRF2 in HPC biology, we applied a xenograft model by inhibiting NRF2 in the human derived HepaRG cell line and transplanting into SCID/beige mice administered with anti-Fas antibody to induce hepatocellular apoptosis; this resulted in effective human hepatocyte repopulation with reduced liver injury. To conclude, NRF2 inhibition leads to the activation and differentiation of liver progenitors. This redox-dependent transcription factor represents a potential target to regulate the commitment of undifferentiated hepatic progenitors into specific lineages.

16.
Hepatology ; 73(1): 247-267, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32222998

RESUMEN

BACKGROUND AND AIMS: Organoids provide a powerful system to study epithelia in vitro. Recently, this approach was applied successfully to the biliary tree, a series of ductular tissues responsible for the drainage of bile and pancreatic secretions. More precisely, organoids have been derived from ductal tissue located outside (extrahepatic bile ducts; EHBDs) or inside the liver (intrahepatic bile ducts; IHBDs). These organoids share many characteristics, including expression of cholangiocyte markers such as keratin (KRT) 19. However, the relationship between these organoids and their tissues of origin, and to each other, is largely unknown. APPROACH AND RESULTS: Organoids were derived from human gallbladder, common bile duct, pancreatic duct, and IHBDs using culture conditions promoting WNT signaling. The resulting IHBD and EHBD organoids expressed stem/progenitor markers leucine-rich repeat-containing G-protein-coupled receptor 5/prominin 1 and ductal markers KRT19/KRT7. However, RNA sequencing revealed that organoids conserve only a limited number of regional-specific markers corresponding to their location of origin. Of particular interest, down-regulation of biliary markers and up-regulation of cell-cycle genes were observed in organoids. IHBD and EHBD organoids diverged in their response to WNT signaling, and only IHBDs were able to express a low level of hepatocyte markers under differentiation conditions. CONCLUSIONS: Taken together, our results demonstrate that differences exist not only between extrahepatic biliary organoids and their tissue of origin, but also between IHBD and EHBD organoids. This information may help to understand the tissue specificity of cholangiopathies and also to identify targets for therapeutic development.


Asunto(s)
Conductos Biliares Extrahepáticos/citología , Conductos Biliares Intrahepáticos/citología , Células Epiteliales/citología , Organoides/fisiología , Animales , Bilis , Conductos Biliares Extrahepáticos/fisiología , Conductos Biliares Intrahepáticos/fisiología , Diferenciación Celular , Conducto Colédoco/citología , Células Epiteliales/fisiología , Vesícula Biliar/citología , Regulación de la Expresión Génica , Humanos , Queratina-19/análisis , Hígado/fisiología , Ratones , RNA-Seq , Obtención de Tejidos y Órganos
17.
Proc Natl Acad Sci U S A ; 117(3): 1678-1688, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31915293

RESUMEN

Primary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.


Asunto(s)
Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatopatías/genética , Alcaloides de Pirrolicidina/farmacología , Animales , Trasplante de Células , Quimera , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Hepatitis B , Virus de la Hepatitis B , Hepatocitos/trasplante , Proteínas de Homeodominio/genética , Humanos , Hidrolasas/genética , Subunidad gamma Común de Receptores de Interleucina/genética , Hígado/patología , Hepatopatías/patología , Malaria , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Plasmodium falciparum
18.
Hepatology ; 71(3): 972-989, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31330051

RESUMEN

BACKGROUND AND AIMS: Mechanisms underlying the repair of extrahepatic biliary tree (EHBT) after injury have been scarcely explored. The aims of this study were to evaluate, by using a lineage tracing approach, the contribution of peribiliary gland (PBG) niche in the regeneration of EHBT after damage and to evaluate, in vivo and in vitro, the signaling pathways involved. APPROACH AND RESULTS: Bile duct injury was induced by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 14 days to Krt19Cre TdTomatoLSL mice. Human biliary tree stem/progenitor cells (BTSC) within PBGs were isolated from EHBT obtained from liver donors. Hepatic duct samples (n = 10) were obtained from patients affected by primary sclerosing cholangitis (PSC). Samples were analyzed by histology, immunohistochemistry, western blotting, and polymerase chain reaction. DDC administration causes hyperplasia of PBGs and periductal fibrosis in EHBT. A PBG cell population (Cytokeratin19- /SOX9+ ) is involved in the renewal of surface epithelium in injured EHBT. The Wnt signaling pathway triggers human BTSC proliferation in vitro and influences PBG hyperplasia in vivo in the DDC-mediated mouse biliary injury model. The Notch signaling pathway activation induces BTSC differentiation in vitro toward mature cholangiocytes and is associated with PBG activation in the DDC model. In human PSC, inflammatory and stromal cells trigger PBG activation through the up-regulation of the Wnt and Notch signaling pathways. CONCLUSIONS: We demonstrated the involvement of PBG cells in regenerating the injured biliary epithelium and identified the signaling pathways driving BTSC activation. These results could have relevant implications on the pathophysiology and treatment of cholangiopathies.


Asunto(s)
Sistema Biliar/fisiopatología , Colangitis Esclerosante/fisiopatología , Regeneración/fisiología , Nicho de Células Madre/fisiología , Adulto , Anciano , Animales , Sistema Biliar/citología , Diferenciación Celular , Colangitis Esclerosante/terapia , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Piridinas/toxicidad , Receptores Notch/fisiología , Vía de Señalización Wnt/fisiología
19.
Sci Rep ; 9(1): 13747, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551447

RESUMEN

One of the strategies of integrated vector management is to lure gravid mosquitoes for surveillance purposes or to entice them to lay eggs in water containing toxins that kill the offspring (attract-and-kill or trap-and-kill). Typically, the major challenge of this approach is the development of a lure that stimulates oviposition plus a toxin with no deterrent effect. Bacillus thuringiensis var. israelensis (Bti) satisfies the latter criterion, but lures for these autocidal gravid traps are sorely needed. We observed that gravid Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus laid significantly more eggs in cups with extracts from 4th-stage larvae (4 L) of the same or different species. No activity was found when 4 L were extracted with hexane, diethyl ether, methanol, or butanol, but activity was observed with dimethyl sulfoxide extracts. Larval extracts contained both oviposition stimulant(s)/attractant(s) and deterrent(s), which partitioned in the water and hexane phases, respectively. Lyophilized larval extracts were active after a month, but activity was reduced by keeping the sample at 4 °C. In the tested range of 0.1 to 1 larvae-equivalent per milliliter, oviposition activity increased in a dose-dependent manner. In field experiments, Ae. aegpti laid significantly more eggs in traps loaded with larval extracts plus Bti than in control traps with water plus Bti.


Asunto(s)
Aedes/efectos de los fármacos , Factores Biológicos/farmacología , Larva/química , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Animales , Bacillus thuringiensis/efectos de los fármacos , Culex/efectos de los fármacos , Femenino , Oviposición/efectos de los fármacos
20.
Expert Rev Gastroenterol Hepatol ; 13(7): 623-631, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31092049

RESUMEN

Introduction: Liver disease is an increasing cause of worldwide mortality, and currently the only curative treatment for end-stage liver disease is whole organ allograft transplantation. Whilst this is an effective treatment, there is a shortage of suitable grafts and consequently some patients die whilst on the waiting list. Cell therapy provides an alternative treatment to increase liver function and potentially ameliorate fibrosis. Areas covered: In this review, we discuss the different cellular sources for therapy investigated to date in humans including mature hepatocytes, hematopoietic stem cells, mesenchymal stromal cells and hepatic progenitor cells. Cells investigated in animals include embryonic stem cells, induced pluripotent stem cells and directly reprogrammed cells. We then appraise the experience and evidence base underlying each cell type. Expert opinion: We discuss how this field may evolve in the years to come focusing on opportunities to enhance the intrinsic regenerative response with therapeutic targets and cell therapies. Growing expertise in tissue engineering will likely lead to increasingly complex bio-reactors and bio-artificial livers, which open a further avenue to restore liver function and delay or prevent the need for transplantation.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Hepatopatías/terapia , Trasplante de Células Madre , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...