Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 7(1): 109, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740942

RESUMEN

Structural annotation of small molecules in tandem mass spectrometry has always been a central challenge in mass spectrometry analysis, especially using a miniaturized mass spectrometer for on-site testing. Here, we propose the Transformer enabled Fragment Tree (TeFT) method, which combines various types of fragmentation tree models and a deep learning Transformer module. It is aimed to generate the specific structure of molecules de novo solely from mass spectrometry spectra. The evaluation results on different open-source databases indicated that the proposed model achieved remarkable results in that the majority of molecular structures of compounds in the test can be successfully recognized. Also, the TeFT has been validated on a miniaturized mass spectrometer with low-resolution spectra for 16 flavonoid alcohols, achieving complete structure prediction for 8 substances. Finally, TeFT confirmed the structure of the compound contained in a Chinese medicine substance called the Anweiyang capsule. These results indicate that the TeFT method is suitable for annotating fragmentation peaks with clear fragmentation rules, particularly when applied to on-site mass spectrometry with lower mass resolution.

2.
Anal Chem ; 95(4): 2348-2355, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36609163

RESUMEN

To figure out the reason for the drawback of the stored waveform inverse Fourier transform (SWIFT) waveform and realize the high-resolution ion isolation on the miniaturized linear ion trap mass spectrometer, we studied the efficiency that ions can be excited under different excitation durations and amplitudes at different frequencies and compared the overlap ratios of the effective excitation frequency bandwidths of the adjacent ions. According to this, we proposed a new coarse-to-fine isolation waveform named SWIFTSIN. By superposing one or more sinusoidal waveforms on the SWIFT waveform and modulating the phases of the superposed sinusoidal waveforms, the generated SWIFTSIN waveform can achieve unit mass isolation on the miniaturized linear ion trap mass spectrometer without reducing the intensity of the target ion. The isolation ability of the SWIFTSIN waveform was verified by isolating a single isotope peak in the mixed samples.

3.
Food Chem ; 386: 132808, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35364493

RESUMEN

With the expansion of the functional food market, the qualification assessment of these products has become a major challenge, and efficient analytical tools are urgently needed. Here, a miniature mass spectrometer (MS) with self-aspiration capillary electrospray ionization (SACESI) source and ion trap analyzer was developed for rapid screening of various illegally added drugs in functional foods. No chromatographic separation was required, but a simplified two-step pretreatment method was developed to reduce the operational procedures and time consumption of the entire analysis. SACESI source uses capillary action to drive solution injection, which utilizes a simple structure and convenient operation to constitute a kind of disposable MS detection solution. To achieve accurate and automatic identification, an intelligent recognition algorithm with steps of spectrum preprocessing, characteristic peak matching, and support vector machine learning was constructed. The relative accuracy of rapid screening of 31 suspicious drugs in various samples is up to 99.78%. It achieves 100% correct identification for the 55 batches of actual samples captured by on-site inspection, which demonstrates the feasibility of the proposed analytical system and strategy in food safety applications.


Asunto(s)
Alimentos Funcionales , Espectrometría de Masas
4.
Talanta ; 230: 122352, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33934800

RESUMEN

With the development of instrumental miniaturization, the portable mass spectrometer is becoming a new tool for on-site rapid analysis of environmental samples. Membrane inlet (MI) and photoionization (PI) are two commonly used sampling and ionization techniques, respectively, as they both exhibit detection selectivity for volatile organic compounds (VOCs). In this paper, a membrane inlet photoionization ion trap mass spectrometer was developed for the direct analysis of VOCs in gaseous samples. With the new structure and timing design, various operation modes were proposed and tested. In particular, the use of pulse carrier gas can integrate the appropriate pressure conditions required by each module, thus improving the efficiency of analyte transport, ionization, and mass analysis. The detection limit of sub-ppb was obtained, and the response time can be greatly reduced by increasing the sample flow rate. Furthermore, the capability of selective enrichment for organic analytes was also realized by using a special accumulation mode with a modified sequence, which is easy to operate because no additional devices are needed.

5.
Anal Chim Acta ; 1157: 338386, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33832586

RESUMEN

Baseline correction is an indispensable step in the signal processing of chemical analysis instruments. With the increasing demand for on-site applications, a variety of analytical instruments require a more friendly, rapid and adaptive baseline correction method. In this paper, a data-driven and coarse-to-fine (DD-CF) baseline correction scheme mainly based on the empirical mode decomposition (EMD) algorithm is proposed. For eliminating the mode-mixing effect of the original EMD, the proposed method firstly obtains a coarse baseline estimation using automatic peak detection, elimination and interpolation; and the EMD is applied on the coarse baseline to get a fine baseline finally. We have compared this method with the adaptive iteratively reweighted Penalized Least Squares algorithm (airPLS) and the sparse representation baseline correction methods using simulated signals and experimental signals from different analytical instruments. Results indicate that the proposed DD-CF scheme can effectively estimate the baseline more accurate than the comparing methods for varies of analytical signals such as mass spectrometer, ion mobility spectrometer, gas chromatograph, etc. Furthermore, with signals of different length, different peak distributions and even from totally different instruments, the proposed method requires minimal user intervention, in which the parameters of the comparing methods should be adjusted for a wide range.

6.
Polymers (Basel) ; 11(3)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30960551

RESUMEN

Membrane inlet mass spectrometry (MIMS) is commonly used for detecting the components in liquid samples. When a liquid sample flows through a membrane, certain analytes will permeate into the vacuum chamber of a mass spectrometer from the solution. The properties of the membrane directly determine the substances that can be detected by MIMS. A capillary introduction (CI) method we previously proposed can also be used to analyze gas and volatile organic compounds (VOCs) dissolved in liquids. When CI analysis is carried out, the sample is drawn into the mass spectrometer with no species discrimination. The performance of these two injection methods was compared in this study, and similar response time and limit of detection (LOD) can be acquired. Specifically, MIMS can provide better detection sensitivity for most inorganic gases and volatile organic compounds. In contrast, capillary introduction shows wider compatibility on analyte types and quantitative range, and it requires less sample consumption. As the two injection methods have comparable characteristics and can be coupled with a miniature mass spectrometer, factors such as cost, pollution, device size, and sample consumption should be comprehensively considered when choosing a satisfactory injection method in practical applications.

7.
Rapid Commun Mass Spectrom ; 32(24): 2159-2165, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30252995

RESUMEN

RATIONALE: Capillary sampling of liquids for direct mass spectrometry (MS) analysis is introduced. The low transfer rate of the solution in the capillary will affect the analytical sensitivity and the response time; hence a pulsed capillary introduction (PCI) method was proposed and characterized. METHODS: The experiments were carried out using a miniature quadrupole mass spectrometer, and liquid can be spontaneously drawn into the vacuum chamber for subsequent ionization and detection. A simple up-and-down motor platform was used to control the brief contact of the capillary inlet with the liquid sample and implement pulsed injection. The pulsed sampling parameters were optimized based on the characterization and dynamic study of liquid transfer in capillaries. RESULTS: Compared with continuous capillary introduction (CCI), PCI can reduce the response time of MS analysis from more than half a minute to a few seconds. In addition, it provides better detection sensitivity as the ion signals of all solution components are enhanced and the acquired limit of detection (LOD) of toluene is about eight times lower than CCI analysis. For each analysis, the consumed sample volume is only a few nanoliters and the absolute consumption of the analyte can reach the femtogram level. CONCLUSIONS: The proposed PCI method is proved to be successful in improving the sampling efficiency when performing direct liquid analysis without increasing the vacuum load. A miniature MS instrument with a proper capillary inlet can possess flexible operation modes to meet different application demands.

8.
Anal Chem ; 89(23): 12938-12944, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29091419

RESUMEN

The performance of a miniature mass spectrometer in atmospheric analysis is closely related to the design of its sampling system. In this study, a simplified vacuum electrospray ionization (VESI) source was developed based on a combination of several techniques, including the discontinuous atmospheric pressure interface, direct capillary sampling, and pneumatic-assisted electrospray. Pulsed air was used as a vital factor to facilitate the operation of electrospray ionization in the vacuum chamber. This VESI device can be used as an efficient atmospheric sampling interface when coupled with a miniature rectilinear ion trap (RIT) mass spectrometer. The developed VESI-RIT instrument enables regular ESI analysis of liquid, and its qualitative and quantitative capabilities have been characterized by using various solution samples. A limit of detection of 8 ppb could be attained for arginine in a methanol solution. In addition, extractive electrospray ionization of organic compounds can be implemented by using the same VESI device, as long as the gas analytes are injected with the pulsed auxiliary air. This methodology can extend the use of the proposed VESI technique to rapid and online analysis of gaseous and volatile samples.

9.
J Am Soc Mass Spectrom ; 28(8): 1702-1708, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28432655

RESUMEN

A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 µL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.

10.
Rev Sci Instrum ; 88(3): 034103, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28372366

RESUMEN

For an ion trap with resonance ejection, peak intensity and peak position of the acquired mass spectra are affected by the phase difference between the radio frequency (RF) and auxiliary alternating current (AC) potentials. To ensure measurement stability, RF and AC phase-locking is commonly used in commercial ion trap mass spectrometers. In this study, a compact electronic control system was developed to accurately regulate the RF and AC phases and was employed in a photoionization rectilinear ion trap (RIT) mass spectrometer. We found that the phase-locking method was defective in multicomponent analysis because the optimal RF and AC phase difference was usually different for different m/z peaks. After studying and characterizing the relationship between the peaks and the RF and AC phases, a correction method based on data processing was used to improve the peaks' stability and accuracy. The results show that the fluctuations of both peak intensity and peak position were significantly reduced and that the instrument presented satisfying reproducibility and quantitative ability.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(6): 1618-23, 2015 Jun.
Artículo en Chino | MEDLINE | ID: mdl-26601378

RESUMEN

A new method of solubilizing, sensitizing and stabilizing petroleum substances by using sodium dodecyl sulfate (SDS) micellar solution as solvent was proposed. The variation relationship between fluorescence intensity of petroleum substances and SDS micellar solution concentration was studied, and the optimum concentration of SDS micelle solution as solvent was determined with 0.1 mol x L(-1). Gasoline, diesel and kerosene SDS micellar solution of different diluted concentration were measured using FLS920 fluorescence spectrometer and fluorescence excitation-emission matrixes (EEMs) were obtained. After analyzing Rayleigh scattering, Raman scattering and instrument characteristics influence on measured spectrum, three-dimensional fluorescence spectra of three kinds of oil samples with excitation wavelength ranging from 250 to 400 nm and emission wavelength from 260 to 500 nm were established by spectral correction. The linear relationship between fluorescence intensity and concentration in certain concentration range was determined. By comparison with the spectra of gasoline, diesel, kerosene aqueous solution with the various concentrations under the same conditions and preparation method, the solubility and fluorescence intensity of petroleum pollutant in water was increased, and better stability was obtained. The measurement of petroleum substances without relying on some toxic solvent extraction was not only achieved, but its low solubility in water and difficult quantitative problems were solved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...