Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Eur J Immunol ; : e2350704, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973082

RESUMEN

Secretory IgA is crucial for preventing the invasion of entero-pathogens via intestinal mucosa. While it is well-established that Transforming growth factor ß1 (TGF-ß1) regulates IgA production in human and mouse B cells, our previous investigation revealed different functions of TGF-ß1 in IgA generation in pigs compared with humans and mice, with the underlying mechanism remaining elusive. In this study, IgM+ B cells from porcine Peyer's patches (PPs) were isolated and stimulated with recombinant porcine TGF-ß1 to evaluate the effect of TGF-ß1 on pigs. The results showed that antibody production from B cells of PPs was impaired by TGF-ß1 ex vivo. Furthermore, TGF-ß1 treatment led to a decrease in the expression of germ-line transcript αand postswitch transcript α. Moreover, we observed that TGF-ß1 predominantly inhibited the phosphorylation of p38-mitogen-activated protein kinases (MAPK), confirming the involvement of the p38-MAPK pathway in porcine IgA generation and IgA class switch recombination. The application of p38-MAPK inhibitor resulted in decreased B-cell differentiation levels. Collectively, this study demonstrates that exogenous TGF-ß1 restrains the production and class switch recombination of IgA antibodies by inhibiting p38-MAPK signaling in porcine PPs B cells, which may constitute a component of TGF-ß1-mediated inhibition of B-cell activation.

2.
AMB Express ; 14(1): 57, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753111

RESUMEN

Respiratory coronaviruses (RCoVs) significantly threaten human health, necessitating the development of an ex vivo respiratory culture system for investigating RCoVs infection. Here, we successfully generated a porcine precision-cut lung slices (PCLSs) culture system, containing all resident lung cell types in their natural arrangement. Next, this culture system was inoculated with a porcine respiratory coronavirus (PRCV), exhibiting clinical features akin to humans who were infected by SARS-CoV-2. The results demonstrated that PRCV efficiently infected and replicated within PCLSs, targeting ciliated cells in the bronchioles, terminal bronchioles, respiratory bronchioles, and pulmonary alveoli. Additionally, through RNA-Seq analysis of the innate immune response in PCLSs following PRCV infection, expression levels of interferons, inflammatory cytokines and IFN stimulated genes were significantly upregulated. This ex vivo model may not only offer new insights into PRCV infection in the porcine respiratory tract but also serve as a valuable tool for studying human respiratory CoVs infection.

3.
Vet Microbiol ; 293: 110096, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636174

RESUMEN

IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Inmunoglobulina A , Virus de la Diarrea Epidémica Porcina , Receptor Toll-Like 9 , Animales , Linfocitos B/inmunología , Técnicas de Cocultivo , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Células Dendríticas/inmunología , Inmunoglobulina A/inmunología , Intestino Delgado/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética
4.
Sheng Li Xue Bao ; 76(1): 59-76, 2024 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-38444132

RESUMEN

Intracerebral hemorrhage (ICH) is the most common subtype of stroke with high disability and high mortality rates. Due to the hypertension with arteriosclerosis, hemopathy and cerebrovascular amyloidosis, the influx of blood from ruptured vessels into the brain destroys the cerebral parenchyma and results in dysfunction of central nervous system because of hematoma compression and a series of toxic metabolites. The cerebral parenchyma consists of gray and white matter. The white matter consists of myelinated axons and oligodendrocytes, whereas the gray matter consists of neuronal cell bodies and dendrites. Currently, most of studies have explored the mechanisms of gray matter injury. But researches of white matter injury (WMI) are still in their infancy, which may be partially responsible for the failure of treatments with neuroprotectants targeting degenerating neuronal cells. In recent years, researchers have progressively identified pathophysiological mechanisms of WMI after ICH including mass effect, neuroinflammation and oxidative stress, but information on the molecular mechanisms of WMI and its effective treatment remains limited. In this paper, we will describe the structure and function of white matter, summarize pathology of WMI and focus on the research advances in the molecular mechanisms and therapeutic strategies of WMI after ICH.


Asunto(s)
Accidente Cerebrovascular , Sustancia Blanca , Humanos , Hemorragia Cerebral/terapia , Encéfalo , Corteza Cerebral
5.
EBioMedicine ; 101: 104993, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38324982

RESUMEN

BACKGROUND: Macrophages are innate immune cells whose phagocytosis function is critical to the prognosis of stroke and peritonitis. cis-aconitic decarboxylase immune-responsive gene 1 (Irg1) and its metabolic product itaconate inhibit bacterial infection, intracellular viral replication, and inflammation in macrophages. Here we explore whether itaconate regulates phagocytosis. METHODS: Phagocytosis of macrophages was investigated by time-lapse video recording, flow cytometry, and immunofluorescence staining in macrophage/microglia cultures isolated from mouse tissue. Unbiased RNA-sequencing and ChIP-sequencing assays were used to explore the underlying mechanisms. The effects of Irg1/itaconate axis on the prognosis of intracerebral hemorrhagic stroke (ICH) and peritonitis was observed in transgenic (Irg1flox/flox; Cx3cr1creERT/+, cKO) mice or control mice in vivo. FINDINGS: In a mouse model of ICH, depletion of Irg1 in macrophage/microglia decreased its phagocytosis of erythrocytes, thereby exacerbating outcomes (n = 10 animals/group, p < 0.05). Administration of sodium itaconate/4-octyl itaconate (4-OI) promoted macrophage phagocytosis (n = 7 animals/group, p < 0.05). In addition, in a mouse model of peritonitis, Irg1 deficiency in macrophages also inhibited phagocytosis of Staphylococcus aureus (n = 5 animals/group, p < 0.05) and aggravated outcomes (n = 9 animals/group, p < 0.05). Mechanistically, 4-OI alkylated cysteine 155 on the Kelch-like ECH-associated protein 1 (Keap1), consequent in nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and transcriptional activation of Cd36 gene. Blocking the function of CD36 completely abolished the phagocytosis-promoting effects of Irg1/itaconate axis in vitro and in vivo. INTERPRETATION: Our findings provide a potential therapeutic target for phagocytosis-deficiency disorders, supporting further development towards clinical application for the benefit of stroke and peritonitis patients. FUNDING: The National Natural Science Foundation of China (32070735, 82371321 to Q. Li, 82271240 to F. Yang) and the Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ202010025033 to Q. Li).


Asunto(s)
Accidente Cerebrovascular Hemorrágico , Peritonitis , Succinatos , Humanos , Ratones , Animales , Proteína 1 Asociada A ECH Tipo Kelch , Accidente Cerebrovascular Hemorrágico/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Macrófagos/metabolismo , Peritonitis/tratamiento farmacológico , Fagocitosis , Pronóstico , Hidroliasas/genética , Hidroliasas/metabolismo , Hidroliasas/farmacología
6.
Redox Biol ; 69: 102982, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070317

RESUMEN

Accumulation of reactive oxygen species (ROS), especially on lipids, induces massive cell death in neurons and oligodendrocyte progenitor cells (OPCs) and causes severe neurologic deficits post stroke. While small compounds, such as deferoxamine, lipostatin-1, and ferrostatin-1, have been shown to be effective in reducing lipid ROS, the mechanisms by which endogenously protective molecules act against lipid ROS accumulation and subsequent cell death are still unclear, especially in OPCs, which are critical for maintaining white matter integrity and improving long-term outcomes after stroke. Here, using mouse primary OPC cultures, we demonstrate that interleukin-10 (IL-10), a cytokine playing roles in reducing neuroinflammation and promoting hematoma clearance, significantly reduced hemorrhage-induced lipid ROS accumulation and subsequent ferroptosis in OPCs. Mechanistically, IL-10 activated the IL-10R/STAT3 signaling pathway and upregulated the DLK1/AMPK/ACC axis. Subsequently, IL-10 reprogrammed lipid metabolism and reduced lipid ROS accumulation. In addition, in an autologous blood injection intracerebral hemorrhagic stroke (ICH) mouse model, deficiency of the endogenous Il-10, specific knocking out Il10r or Dlk1 in OPCs, or administration of ACC inhibitor was associated with increased OPC cell death, demyelination, axonal sprouting, and the cognitive deficits during the chronic phase of ICH and vice versa. These data suggest that IL-10 protects against OPC loss and white matter injury by reducing lipid ROS, supporting further development of potential clinical applications to benefit patients with stroke and related disorders.


Asunto(s)
Ferroptosis , Accidente Cerebrovascular , Animales , Humanos , Ratones , Interleucina-10/genética , Interleucina-10/metabolismo , Lípidos , Oligodendroglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-37874497

RESUMEN

Bacterial diarrhea causes serious losses for the sheep industry. Antibiotic resistance acquired by diarrheal bacteria is still a hurdle in the care of animal health. Thus, it is urgent to develop effective alternatives to antibiotics for controlling bacterial diarrhea. We initially isolated Bacillus spp. from Xinjiang fine wool sheep fecal and determined their properties of hemolysis and tolerance to acid and bile salts to identify potential candidates. Subsequently, we studied the position of a candidate in phylogenetic trees by 16S rRNA sequences and its susceptibility to antibiotics, ability to inhibit diarrheal bacteria, and toxicity, as well as its effects on animal health. Fourteen Bacillus spp. strains were isolated from sheep fecal. We identified the non-hemolysis B63 strain, which exhibited a high tolerance to acid and bile salts. Phylogenetic analysis indicated that the B63 strain is a new strain of Bacillus licheniformis. The B. licheniformis B63 strain was prompt to form spores, susceptible to commonly used antibiotics, and able to inhibit diarrhea-associated bacteria, including Escherichia coli, Staphylococcus aureus, and Salmonella typhi. Animal studies determined that B. licheniformis B63 at 4 × 108 CFU/mL was non-toxic to mice and SD rats. Supplement with B. licheniformis B63 promoted the body weight gain of mice, reduced the inflammatory interleukin 6, and increased the jejunum villus height of SD rats. The newly isolated, non-hemolysis, spore-forming B. licheniformis B63 strain should be considered an optimal strain for the development of an effective probiotic supplement to control diarrheal diseases and promote the health of sheep and other animals.

9.
Cell Death Discov ; 9(1): 396, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880213

RESUMEN

Zinc finger protein 281 (ZNF281) has been shown to promote tumor progression. However, the underlying mechanism remains to be further elucidated. In this study, ZNF281 knockdown increased the expression of mitochondrial transcription factor A (TFAM) in hepatocellular carcinoma (HCC) cells, accompanied with increment of mitochondrial content, oxygen consumption rate (OCR) and levels of TCA cycle intermetabolites. Mechanistic investigation revealed that ZNF281 suppressed the transcription of TFAM, nuclear respiratory factor 1 (NRF1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Furthermore, ZNF281 interacted with NRF1 and PGC-1α, and was recruited onto the promoter regions of TFAM, TFB1M and TFB2M repressing their expression. Knockdown of TFAM reversed ZNF281 depletion induced up-regulation of mitochondrial biogenesis and function, as well as impaired epithelial mesenchymal transition, invasion and metastasis of HCC cells. Our research uncovered a novel suppressive function of ZNF281 on mitochondrial biogenesis through inhibition of the NRF1/PGC-1α-TFAM axis, which may hold therapeutic potentials for HCC.

10.
Virology ; 587: 109880, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37696054

RESUMEN

Porcine epidemic diarrhea virus (PEDV) can infect all ages of pigs, particularly newborn piglets with a mortality almost reaching to 80-100%, causing significant economic losses to the global pig industry. The mucosal immune response is crucial for PEDV prevention, in which specific dendritic cells (DCs) and differentiated T cells play vital roles. In this study, CD103+DCs were differentiated successfully with retinoic acid (RA) treatment in vitro. PEDV could not replicate efficiently in differentiated CD103+DCs but could promote maturation of CD103+DCs by up-regulating the expression of SLA-DR, CD1a, CD86, and cytokines of IL-1ß and IL-10. In addition, PEDV-infected CD103+DCs and CD4+T cells were co-cultured, and the results showed that the differentiation of CD4+T cells toward Th1, Tfh, and Treg, but not Th2. These results demonstrate that PEDV-infected CD103+DCs could promote the differentiation of CD4+T cells, which provided the basis for further study of mucosal response induced by PEDV via CD103+DCs.

11.
FASEB J ; 37(10): e23180, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37738038

RESUMEN

Transforming growth factor ß1 (TGF-ß1) performs a critical role in maintaining homeostasis of intestinal mucosa regulation and controls the survival, proliferation, and differentiation of many immune cells. In this study, we discovered that the infection of porcine epidemic diarrhea virus (PEDV), a coronavirus, upregulated TGF-ß1 expression via activating Tregs. Besides, recombinant porcine TGF-ß1 decreased the percentage of CD21+ B cells within the lymphocyte population in vitro. We further found that TGF-ß1 reduced the IgA-secreting B cell numbers and also inhibited plasma cell differentiation. Additional investigations revealed that TGF-ß1 induced the apoptosis of IgM+ B cells in both peyer's patches (PPs) and peripheral blood (PB) through the activation of the Bax/Bcl2-Caspase3 pathway. Conversely, the application of the TGF-ß1 signaling inhibitor SB431542 significantly antagonized the TGF-ß1-induced reduction of IgA secretion and B cell apoptosis and restored plasma cell differentiation. Collectively, TGF-ß1 plays an important role in regulating the survival and differentiation of porcine IgA-secreting B cells through the classical mitochondrial apoptosis pathway. These findings will facilitate future mucosal vaccine designs that target the regulation of TGF-ß1 for the control of enteric pathogens in the pig industry.


Asunto(s)
Células Plasmáticas , Factor de Crecimiento Transformador beta1 , Porcinos , Animales , Proteína X Asociada a bcl-2 , Diferenciación Celular , Apoptosis , Inmunoglobulina A , Inmunoglobulina M
12.
J Cereb Blood Flow Metab ; 43(8): 1365-1381, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36960698

RESUMEN

Spontaneous intracerebral hemorrhage (ICH) is a devastating disease with high morbidity and mortality worldwide. We have previously shown that ferroptosis contributes to neuronal loss in ICH mice. The overload of iron and dysfunction of glutathione peroxidase 4 (GPx4) promote neuronal ferroptosis post-ICH. However, how epigenetic regulatory mechanisms affect the ferroptotic neurons in ICH remains unclear. In the current study, hemin was used to induce ferroptosis in N2A and SK-N-SH neuronal cells to mimic ICH. The results showed that hemin-induced ferroptosis was accompanied by an increment of global level of trimethylation in histone 3 lysine 9 (H3K9me3) and its methyltransferase Suv39h1. Transcriptional target analyses indicated that H3K9me3 was enriched at the promoter region and gene body of transferrin receptor gene 1 (Tfr1) and repressed its expression upon hemin stimulation. Inhibition of H3K9me3 with inhibitor or siRNA against Suv39h1 aggravated hemin- and RSL3-induced ferroptosis by upregulating Tfr1 expression. Furthermore, Suv39h1-H3K9me3 mediated repression of Tfr1 contributes to the progression of ICH in mice. These data suggest a protective role of H3K9me3 in ferroptosis post ICH. The knowledge gained from this study will improve the understanding of epigenetic regulation in neuronal ferroptosis and shed light on future clinical research after ICH.


Asunto(s)
Ferroptosis , Ratones , Animales , Hemina/farmacología , Hemina/metabolismo , Epigénesis Genética , Hemorragia Cerebral/metabolismo , Neuronas/metabolismo
13.
Virology ; 579: 1-8, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36584644

RESUMEN

Since the emergence of the highly pathogenic porcine epidemic diarrhea virus (PEDV) strain in 2010, the prevention of porcine epidemic diarrhea (PED) in pig farms remains problematic. To find the reasons behind the high mortality in young piglets, the relative mRNA expression of inflammation-related factors in infected pigs of different ages as well as uninfected pigs were detected by RT-qPCR. The results showed that the mRNA expression of these factors including IL-6 and TNF-α was more increased in infected younger piglets than infected older pigs. To clarify the relationship between these inflammation related factors, the pairwise linear correlation between the relative expression of these factors were analyzed and showed as network mapping with different correlation coefficients. A strong positive correlation was observed between the expression of various factors in 1-week-old piglets. Combined with the difference in mortality of PEDV infection in pigs of different ages, we hypothesized that lactic acid bacteria (LAB) could inhibit PEDV infection in newborn piglets, and an in vivo experiment was carried out. The results of survival rate and wet/dry ratio showed that LAB alleviated PEDV indued mortality and diarrhea. The detection of viral copies and tissue section staining showed less observed viruses in LAB treated pig. RT-qPCR results of gene expression in intestines showed that LAB modulated the gene expression of various host barrier genes, indicating that LAB is potential to inhibit PEDV infection by regulating the host intestinal barrier. However, to use LAB as therapy, how to improve the efficiency on inhibiting PEDV infection needs further studies.


Asunto(s)
Infecciones por Coronavirus , Lactobacillales , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Diarrea Epidémica Porcina/genética , Lactobacillales/genética , Diarrea/prevención & control , Diarrea/veterinaria , Diarrea/patología , ARN Mensajero , Inflamación , Administración Oral , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/patología
14.
Arch Virol ; 167(11): 2249-2262, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36029354

RESUMEN

Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.


Asunto(s)
Deltacoronavirus , Animales , China , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Deltacoronavirus/genética , Deltacoronavirus/aislamiento & purificación , Deltacoronavirus/patogenicidad , Diarrea/veterinaria , Genómica , Filogenia , Porcinos , Enfermedades de los Porcinos/virología , Virulencia
15.
Sci Rep ; 12(1): 11385, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790870

RESUMEN

Severe and prolonged social stress induces mood and cognitive dysfunctions and precipitates major depression. Neuroinflammation has been associated with chronic stress and depression. Rodent studies showed crucial roles of a few inflammation-related lipid mediators for chronic stress-induced depressive-like behaviors. Despite an increasing number of lipid mediators identified, systematic analyses of synthetic pathways of lipid mediators in chronic stress models have not been performed. Using LC-MS/MS, here we examined the effects of chronic social defeat stress on multiple synthetic pathways of lipid mediators in brain regions associated with stress susceptibility in mice. Chronic social defeat stress increased the amounts of 12-lipoxygenase (LOX) metabolites, 12-HETE and 12-HEPE, specifically in the nucleus accumbens 1 week, but not immediately, after the last stress exposure. The increase was larger in stress-resilient mice than stress-susceptible mice. The S isomer of 12-HETE was selectively increased in amount, indicating the role of 12S-LOX activity. Among the enzymes known to have 12S-LOX activity, only Alox12 mRNA was reliably detected in the brain and enriched in brain endothelial cells. These findings suggest that chronic social stress induces a late increase in the amounts of 12S-LOX metabolites derived from the brain vasculature in the nucleus accumbens in a manner associated with stress resilience.


Asunto(s)
Núcleo Accumbens , Derrota Social , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Animales , Araquidonato 12-Lipooxigenasa/metabolismo , Cromatografía Liquida , Células Endoteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Espectrometría de Masas en Tándem
16.
BMC Res Notes ; 15(1): 143, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449110

RESUMEN

OBJECTIVE: Universal noninvasive genomic screening to detect cancer and/or fetal DNA in plasma at all stages of development is highly warranted. Since 5-hydroxymethylcytosine (5hmC) emerged as an intermediate metabolite in active DNA demethylation, there have been increasing efforts to elucidate its function as a stable modification of the genome. In the current study, we demonstrate that discrete 5hmC sites within 80 bp hotspot regions exist in a greater proportion of cancer versus normal cells. RESULT: 5hmC was detected in 16 of 17 known hotspots having C to T or G to A mutations. The results show the presence of two characteristically distinct 5hmC groups: Tier 1 Group with 3 to eightfold more 5hmCs detected in tumor-cells than in normal-cell derived DNA (as observed in 6 of 11 CpG sites). Tier 2 group with equal allele frequency of 5hmC among normal and tumor-cell derived DNA at 5 CpG hotspot sites as well as 5 non-CpG hotspots. Thus, detection and quantification of the Tier 1 group of 5hmC sites or its prevalence at or near cancer mutation hot spots in cells may enable early detection, screening and potentially prediction of the likelihood of cancer occurrence or the severity of the cancer.


Asunto(s)
Metilación de ADN , Neoplasias , 5-Metilcitosina/análogos & derivados , ADN/metabolismo , Metilación de ADN/genética , Humanos , Mutación , Neoplasias/diagnóstico , Neoplasias/genética
17.
Cell Death Dis ; 13(3): 259, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35318305

RESUMEN

Oligodendrocyte progenitor cells (OPCs) differentiate to myelin-producing mature oligodendrocytes and enwrap growing or demyelinated axons during development and post central nervous diseases. Failure of remyelination owing to cell death or undifferentiation of OPCs contributes to severe neurologic deficits and motor dysfunction. However, how to prevent the cell death of OPCs is still poorly understood, especially in hemorrhagic diseases. In the current study, we injected autologous blood into the mouse lateral ventricular to study the hemorrhage-induced OPC cell death in vivo. The integrity of the myelin sheath of the corpus callosum was disrupted post intraventricular hemorrhage (IVH) assessed by using magnetic resonance imaging, immunostaining, and transmission electron microscopy. Consistent with the severe demethylation, we observed massive cell death of oligodendrocyte lineages in the periventricular area. In addition, we found that ferroptosis is the major cell death form in Hemin-induced OPC death by using RNA-seq analysis, and the mechanism was glutathione peroxidase 4 activity reduction-resulted lipid peroxide accumulation. Furthermore, inhibition of ferroptosis rescued OPC cell death in vitro, and in vivo attenuated IVH-induced white matter injury and promoted recovery of neurological function. These data demonstrate that ferroptosis is an essential form of OPC cell death in hemorrhagic stroke, and rescuing ferroptotic OPCs could serve as a therapeutic target for stroke and related diseases.


Asunto(s)
Ferroptosis , Accidente Cerebrovascular Hemorrágico , Células Precursoras de Oligodendrocitos , Sustancia Blanca , Animales , Diferenciación Celular/fisiología , Hemorragia/metabolismo , Hemorragia/patología , Ratones , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Sustancia Blanca/patología
18.
Redox Biol ; 50: 102256, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35131600

RESUMEN

Diabetic hyperglycemia aggravates the prognosis of intracerebral hemorrhagic stroke (ICH) in the clinic. In addition to hematoma expansion and increased inflammation, how diabetic hyperglycemia affects the outcomes of ICH is still unclear. We found that streptozotocin-induced diabetic hyperglycemia not only increased neutrophil infiltration, but also changed the gene expression profile of neutrophils, including lactoferrin (Ltf) encoding gene Ltf. Peroxisome proliferator-activated receptor γ (PPARγ) transcribed Ltf and the lack of neutrophilic Ltf transcription and secretion exacerbated neuronal ferroptosis by accumulating intraneuronal iron. Furthermore, the administration of recombinant Ltf protected against neuronal ferroptosis and improved neurobehavior in hyperglycemic ICH mice, and vice versa. These results indicate that supplementing Ltf or inhibiting neuronal ferroptosis are promising potential strategies to improve the acute outcomes of diabetic ICH in the clinic.


Asunto(s)
Ferroptosis , Accidente Cerebrovascular Hemorrágico , Accidente Cerebrovascular , Animales , Hemorragia Cerebral/metabolismo , Lactoferrina/farmacología , Ratones , Ratones Obesos , Accidente Cerebrovascular/genética
19.
Cancer Cell Int ; 19: 306, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31832019

RESUMEN

BACKGROUND: Increased cell mobility is a signature when tumor cells undergo epithelial-to-mesenchymal transition. TGF-ß is a key stimulating factor to promote the transcription of a variety of downstream genes to accelerate cancer progression and metastasis, including osteopontin (OPN) which exists in several functional forms as different splicing variants. In non-small cell lung cancer cells, although increased total OPN expression was observed under various EMT conditions, the exact constitution and the underlining mechanism towards the generation of such OPN splicing isoforms was poorly understood. METHODS: We investigated the possible mechanisms of osteopontin splicing variant and its role in EMT and cancer metastasis using NSCLC cell line and cell and molecular biology techniques. RESULTS: In this study, we determined that OPNc, an exon 4 excluded shorter form of Opn gene products, appeared to be more potent to promote cell invasion. The expression of OPNc was selectively increased to higher abundance during EMT following TGF-ß induction. The switching from OPNa to OPNc could be enhanced by RUNX2 (a transcription factor that recognizes the Opn gene promoter) overexpression, but appeared to be strictly in a HDAC dependent manner in A549 cells. The results suggested the increase of minor splicing variant of OPNc required both (1) the enhanced transcription from its coding gene driven by specific transcription factors; and (2) the simultaneous modulation or fluctuation of the coupled splicing process that depends to selective classed of epigenetic regulators, predominately HDAC family members. CONCLUSION: Our study not only emphasized the importance of splicing variant for its role in EMT and cancer metastasis, but also helped to understand the possible mechanisms of the epigenetic controls for defining the levels and kinetic of gene splicing isoforms and their generations.

20.
Molecules ; 24(21)2019 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-31684125

RESUMEN

Adeno-Associated Viruses (AAV) are widely used gene-therapy vectors for both clinical applications and laboratory investigations. The titering of different AAV preparations is important for quality control purposes, as well as in comparative studies. However, currently available methods are limited in their ability to detect various serotypes with sensitivity and convenience. Here, we took advantage of a newly discovered AAV receptor protein with high affinity to multiple AAV serotypes, and developed an ELISA-like method named "VIRELISA" (virus receptor-linked immunosorbent assay) by adopting fusion with a streptavidin-binding peptide (SBP). It was demonstrated that optimized VIRELISA assays exhibited satisfactory performance for the titering of AAV2. The linear range of AAV2 was 1 × 105 v.g. to 5 × 109 v.g., with an LOD (limit of detection) of 5 × 104 v.g. Testing of VIRELISA for the quantification of AAV1 was also successful. Our study indicated that a generic protocol for the quantification of different serotypes of AAVs was feasible, reliable and cost-efficient. The applications of VIRELISA will not only be of benefit to laboratory research due to its simplicity, but could also potentially be used for monitoring the circulation AAV loads both in clinical trials and in wild type infection of a given AAV serotype.


Asunto(s)
Dependovirus/aislamiento & purificación , Vectores Genéticos/aislamiento & purificación , Proteínas Recombinantes/genética , Dependovirus/genética , Ensayo de Inmunoadsorción Enzimática , Vectores Genéticos/genética , Humanos , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...